

Maximum Consensus:

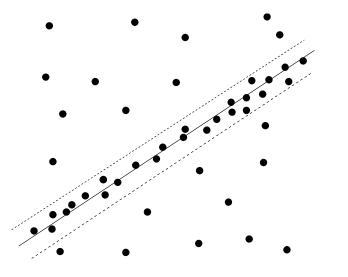
Estimate a model that is consistent with as many of the data as possible:

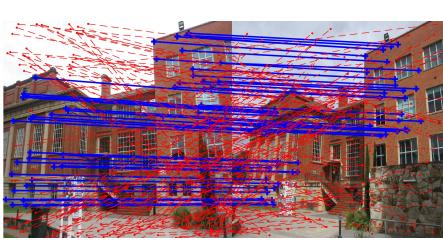
$$\max_{\boldsymbol{\theta} \in \mathbb{R}^d, \ \mathcal{I} \in \mathcal{P}(N)}$$

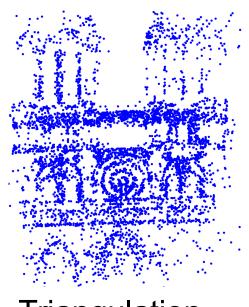
subject to

(1) $|\mathbf{x}_{i}^{T}\boldsymbol{\theta} - y_{j}| \leq \epsilon \qquad \forall j \in \mathcal{I},$

Applications:







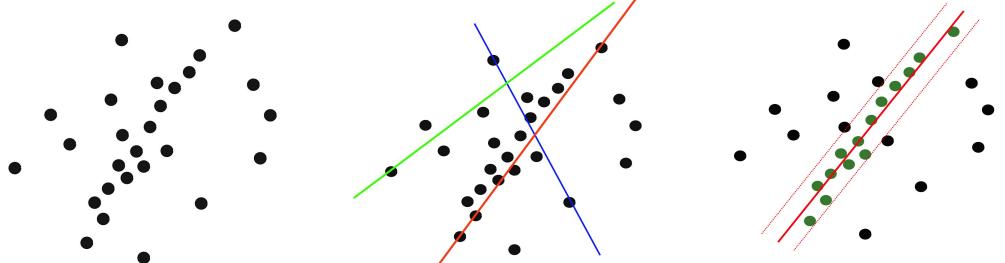
Line/Plane fitting

Homography Estimation

Triangulation

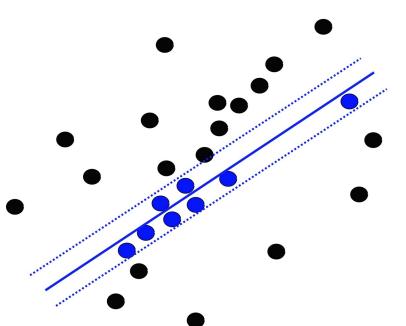
RANSAC

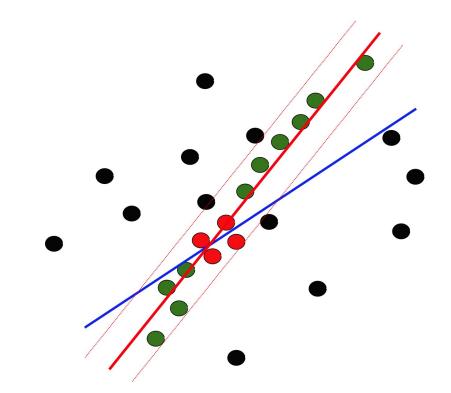
- \succ Fit a model onto randomly sampled minimal subsets.
- \succ Return the model with the largest consensus size.



Locally optimized RANSAC (LO-RANSAC)

- Execute an inner sampling routine whenever the solution is updated by RANSAC.
- Non-deterministic.

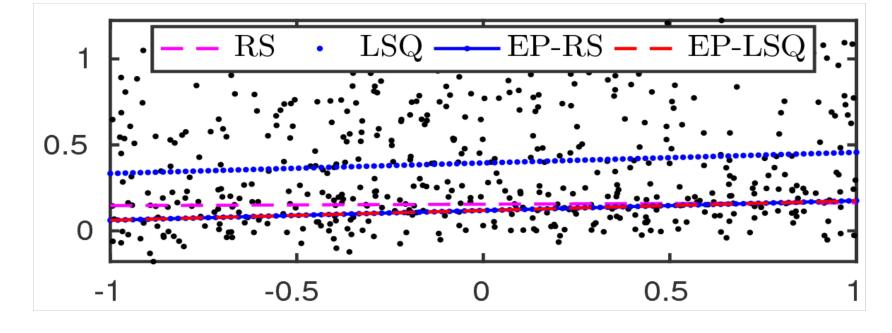




An Exact Penalty Method for Locally Convergent Maximum Consensus Huu Le, Tat-Jun Chin and David Suter School of Computer Science, The University of Adelaide

Deterministic local refinement

 \succ Improve an initial estimate (RANSAC, LSQ,...) to a solution with larger consensus size.



 $\max_{\boldsymbol{\theta} \in \mathbb{R}^d, \ \mathcal{I} \in \mathcal{P}(M)}$ $\mathbf{a}_i^T \boldsymbol{\theta} - b_i \leq 0$ $\forall i \in \mathcal{I}$ subject to $\mathbf{A} = \begin{bmatrix} \mathbf{x}_1, -\mathbf{x}_1, \dots, \mathbf{x}_N, -\mathbf{x}_N \end{bmatrix},$ $\mathbf{b} = \left[\epsilon + y_1, \epsilon - y_1, \dots, \epsilon + y_N, \epsilon - y_N\right]^T$ Outlier minimization $\min_{\mathbf{u} \in \{0,1\}^M, \ \mathbf{s} \in \mathbb{R}^M, \ \boldsymbol{\theta} \in \mathbb{R}^d}$ $s_i - \mathbf{a}_i^T \boldsymbol{\theta} + b_i \ge 0,$ subject to $u_i(s_i - \mathbf{a}_i^T \boldsymbol{\theta} + b_i) = 0,$ $s_i(1-u_i)=0,$ $s_i \ge 0.$ $\succ \text{ Let } \mathbf{v} = \begin{bmatrix} \boldsymbol{\theta} + \gamma \mathbf{1} \\ \gamma \end{bmatrix}, \quad \mathbf{c}_i = \begin{bmatrix} \mathbf{a}_i^T & -\mathbf{a}_i^T \mathbf{1} \end{bmatrix}^T$ $\min_{\mathbf{u},\mathbf{s}\in\mathbb{R}^{M},\ \mathbf{v}\in\mathbb{R}^{d+1}}$ $s_i - \mathbf{c}_i^T \mathbf{v} + b_i \ge 0,$ subject to $u_i(s_i - \mathbf{c}_i^T \mathbf{v} + b_i) = 0, \quad (2)$ $s_i(1-u_i)=0,$ $1 - u_i \ge 0,$ $s_i, u_i, v_i \ge 0.$

0.5 -0.5

Penalty Method

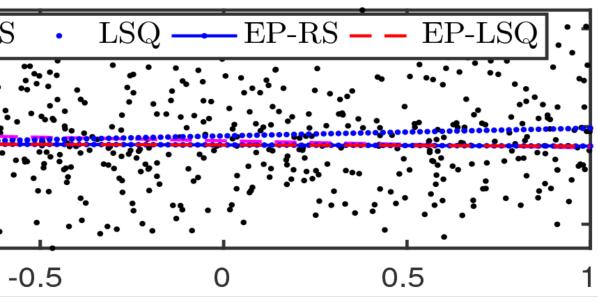
to the cost function:

$$\min_{\mathbf{u},\mathbf{s},\mathbf{v}} \quad \sum_{i} u_{i} + \alpha \left[u_{i}(s_{i} - \mathbf{x}_{i}) \mathbf{x}_{i} - \mathbf{c}_{i}^{T} \mathbf{v} + b_{i} \ge 0, \\ 1 - u_{i} \ge 0, \\ 0 = 0, \quad n \ge 0 \right]$$

 $s_i, u_i, v_i \geq 0.$

Frank-Wolfe method for solving (3)

	Fi	$X S, V \rightarrow$
	Fi	$x \mathbf{u} \rightarrow (2)$
	Alg	orithm 1 Fr
	Rec	quire: Data
		$\mathbf{\bar{u}}^{(0)},\mathbf{v}^{(0)},\mathbf{s}^{(0)}$
	1:	(0)
	2:	$t \leftarrow 0.$
	3:	while true d
	4:	$t \leftarrow t + 1$
	5:	$\mathbf{s}^{(t)}, \mathbf{v}^{(t)}$
	6:	$\mathbf{u}^{(t)} \leftarrow \mathbf{a}$
	7:	$P^{(t)} \leftarrow I$
	8:	if $ P^{(t-1)} $
	9:	Break.
	10:	end if
		end while
	12:	return $\mathbf{u}^{(t)}$
;	* ΔΙ	aorithm 1



Incorporate the complementarity constraints

$$-\alpha \left[u_i(s_i - \mathbf{c}_i^T \mathbf{v} + b_i) + s_i(1 - u_i) \right]$$

(2) becomes LP with respect to **u**) becomes LP with respect to **s**,**v**

rank-Wolfe method for (3).

 $\{\mathbf{c}_i, b_i\}_{i=1}^M$, penalty value α , initial solution $\mathbf{s}^{(0)}$, threshold δ . $(\mathbf{u}^{(0)}, \mathbf{s}^{(0)}, \mathbf{v}^{(0)} \mid \alpha).$

 $\leftarrow \arg\min_{\mathbf{s},\mathbf{v}} P(\mathbf{u}^{(t-1)},\mathbf{s},\mathbf{v} \mid \alpha) \text{ s.t. } \mathcal{P}.$ $\operatorname{arg\,min}_{\mathbf{u}} P(\mathbf{u}, \mathbf{s}^{(t)}, \mathbf{v}^{(t)} \mid \alpha) \text{ s.t. } \mathcal{P}.$ $P(\mathbf{u}^{(t)}, \mathbf{s}^{(t)}, \mathbf{v}^{(t)} \mid \alpha).$ $|D(t) - P^{(t)}| \le \delta$ then

), $\mathbf{v}^{(t)}$, $\mathbf{s}^{(t)}$.

Algorithm 1 converges to a KKT point of (3)

Main algorithm

 \succ **Theorem:** There exists α^* such that for all $\alpha \ge \alpha^*$, a KKT point of (3) is also a KKT point of (2)

Algorithm 2 Main algorithm for solving (2).

Require: Data $\{c_i, b_i\}_{i=1}^M$, initial model parameter θ , initial penalty value α , increment rate κ , threshold δ .

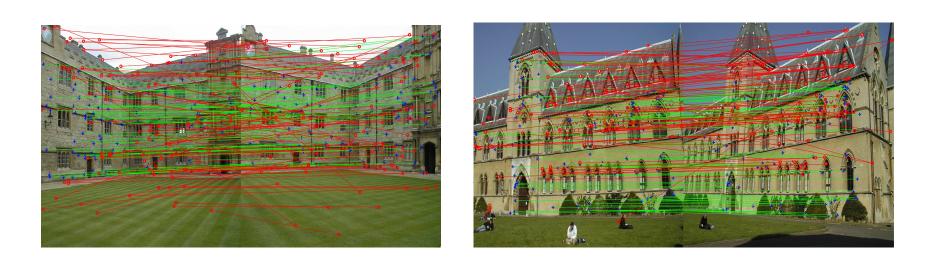
1:
$$\mathbf{v} \leftarrow \begin{bmatrix} \boldsymbol{\theta}^T & \mathbf{1}^T \boldsymbol{\theta} \end{bmatrix}$$

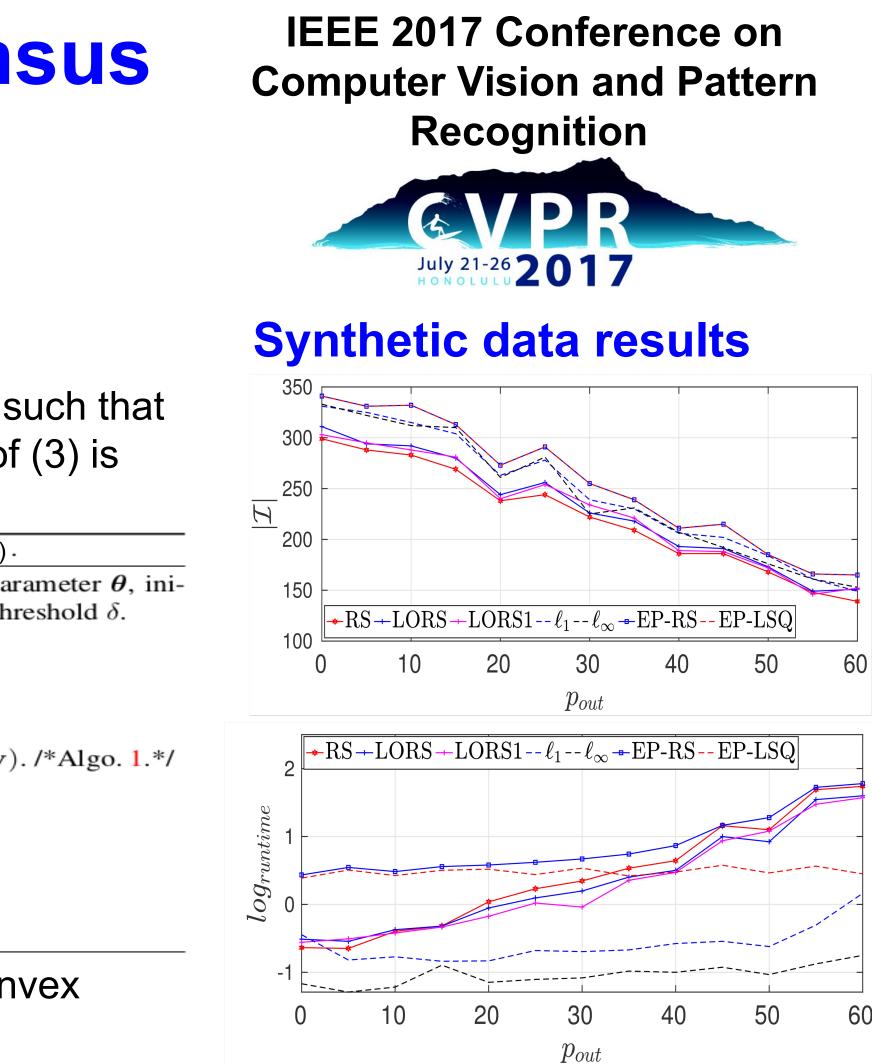
2:
$$\mathbf{s} \leftarrow \mathbf{C}\mathbf{v} - \mathbf{b}$$
.

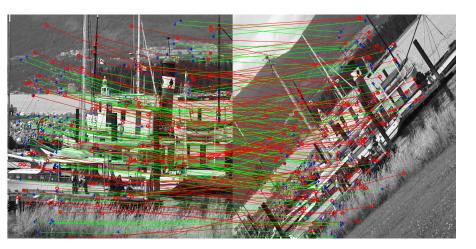
- 3: $\mathbf{u} \leftarrow \mathbb{I}(\mathbf{s} > 0)$.
- while true do
- $\mathbf{u}, \mathbf{s}, \mathbf{v} \leftarrow FW(\{\mathbf{c}_i, b_i\}_{i=1}^M, \alpha, \mathbf{u}, \mathbf{s}, \mathbf{v}). /*Algo. 1.*/$
- if $Q(\mathbf{z}) \leq \delta$ then
- Break
- $\alpha \leftarrow \kappa \cdot \alpha$
- 10: end while
- 11: return $\mathbf{u}, \mathbf{s}, \mathbf{v}$
- Can be applied to quasiconvex problems

Real data results

	Methods		RS	PS	GMLE	LORS	LORS1	ℓ_1	ℓ_{∞}	EP-RS	$EP-\ell_{\infty}$
Homography estimation	University Library	$ \mathcal{I} $	251	269	251	294	294	120	53	301	301
	N = 545	time (s)	0.73	0.62	0.69	1.90	1.89	3.10	2.49	12.76	14.49
	Christ Church	$ \mathcal{I} $	235	236	227	250	246	246	160	280	280
	N = 445	time (s)	0.47	0.47	0.43	1.33	1.61	1.23	2.44	10.37	12.67
	Valbonne	$ \mathcal{I} $	131	134	117	156	136	24	22	158	158
	N = 434	time (s)	3.17	2.39	5.76	3.04	5.80	1.36	1.27	17.20	14.84
	Kapel	$ \mathcal{I} $	163	167	130	167	168	28	161	170	170
	N = 449	time (s)	1.19	1.15	9.89	2.18	2.70	1.62	1.16	8.46	8.68
	Invalides	$ \mathcal{I} $	144	159	140	149	156	84	142	178	178
	N = 413	time (s)	1.36	0.90	1.60	2.17	2.94	1.04	0.71	10.20	9.15
Affinity estimation	Bikes	$ \mathcal{I} $	424	427	425	426	424	387	431	437	437
	N = 557	time (s)	6.09	6.09	5.79	6.28	11.8	1.77	1.77	15.26	9.81
	Graff	$ \mathcal{I} $	126	129	127	134	126	147	274	276	276
	N = 327	time (s)	3.51	3.35	3.14	4.07	6.61	0.99	0.23	5.94	2.70
	Bark	$ \mathcal{I} $	279	288	270	284	279	298	439	442	442
	N = 458	time (s)	4.89	4.93	4.68	5.11	9.54	1.31	0.19	10.19	5.51
	Tree	$ \mathcal{I} $	372	367	371	372	372	377	370	396	396
	N = 568	time (s)	5.70	6.01	5.73	6.93	11.50	4.81	0.81	15.96	11.82
	Boat	$ \mathcal{I} $	476	477	476	477	476	469	464	483	483
	N = 574	time (s)	6.32	6.29	6.02	7.18	12.32	4.12	1.02	14.86	9.33







MATLAB code is available at: http://cs.adelaide.edu.au/~huu