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v —— Deep Fusion || 96.02 | 89.05 | 88.38 || 96.34 | 89.39 | 88.67 || 95.01 | 87.59 | 79.90 Ours (BV+FV+RGB)*" || 96.34 | 89.39 | 88.67 || 86.55 | 78.10 | 76.67
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2x decony pooling Easy | Mod. | Hard || Easy | Mod. | Hard || Easy | Mod. | Hard Easy | Mod. | Hard || Easy | Mod. | Hard || Easy | Mod. | Hard
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® sparse 3D p()jnt cloud —> compact 2D feature maps T ' ' ’ ' ’ ' ' ' ‘ Ours (BV+EV)* 96.03 | 88.85 | 88.39 |( 95.19 | 87.65 | 80.11 || 71.19 | 56.60 | 55.30
o slow 3D convolutions —> efficient 9D convolutions FVABY ] 991971 87.60 1 80.11 1) 95.74 1 88.07 1 88.15 1| 66.41 | /8.97 1 /6.16 Ours (BV+FV+RGB)*' || 96.52 | 89.56 | 88.94 || 96.02 | 89.05 | 88.38 || 71.29 | 62.68 | 56.56
BV+RGB 96.09 | 33.70 | 80.52 || 96.45 | 89.19 | 80.69 || 89.61 | 87.76 | 79.76 ) .
l  Bird view Front view BVIEV+RGB || 96.02 | 89.05 | 88.38 || 96.34 | 89.39 | 88.67 || 95.01 | 87.59 | 79.90 2D Detection AP on Test Set ()
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Vi _ Faster RCNN [NIPS'15]" [87.90 [ 79.11 [ 70.19 || Vote3D [RSS'15]*  |56.66 | 48.05 | 42.64
O Mono3D [CVPR’16]" [90.27 |87.86|78.09| VeloFCN [RSS’16]* |70.68]53.45 | 46.90
Cohsie P S ety 3DOP [NIPS’15]F  [90.09 | 88.34 | 78.79 || Vote3Deep [arXiv'16]* | 76.95 | 68.39 | 63.22
reight Maps density ntensity MS-CNN [ECCV’16]" |90.46 | 88.83 | 74.76 || 3D FCN [IROS'17]* |85.54|75.83 | 68.30
3D Proposal Network: SubCNN [WACV’,17]: 90.75|88.86 | 79.24 || Ours (BV+FV)* |89.80|79.76 | 78.61
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o Multi-View ROI Pooling: establish mappings among multiple views

- Monocular, ¥: Stereo, *: LIDAR



