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Image Geo-Localization Contextual Reweighting Network (CRN) Experiments
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Q. How to find relevant contexts? ll .‘ .....
» Defining supervised priors is limited and cumbersome ~ |
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» Take advantage of end-to-end learning '.... !...l

» Network learns relevant context and weighting as it tries to minimize
the geo-localization error (using only GPS-tags)
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Automatic Training Triplet Generation

Input: A set of images with GPS-tags (e.g. Flicker images), Reference images Tokyo 24/7 and Pittsburgh 250k Oxford Buildings 5k and 105k
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Within-Batch Hard Negative Mining = : ‘ ‘ ' ‘
= Qur training pipeline only requires image geo-tags as weak supervision e Images within the batch that are closest "y
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