Dense Captioning with Joint Inference and Visual Context

Introduction

Dense captioning is a newly emerging computer vision topic for understanding images with dense language descriptions. Goals

densely detect visual concepts 2 label each with a short description

Two key challenges

Highly overlapping target regions

2 Ambiguous objects without context

Building or desktop?

Contribution

We design network structures that incorporate two novel ideas:

joint inference Localization guided by semantic information

context fusion Description guided by visual context

Our best model achieves a 73% relative gain over the previous state-of-the-art.

Linjie Yang, Kevin Tang, Jianchao Yang, and Li-Jia Li

Snap Inc.

Approach

End-to-end network with two stages: a region detection network and a localization and captioning network

region detection network

Joint inference structure

We can combine any joint inference structure with any context fusion structure. Combination of T-LSTM + Late fusion looks like

localization and captioning network

Experiments

Visual Genome V1.0

Baseline and joint inference models

model	Johnson et.al.	baseline	S-LSTM	SC-LSTM	T-LSTM	th sl
fixed-CNN&RPN	-	5.26	5.15	5.57	5.64	
end-to-end	5.39	6.85	6.47	6.83	8.03	w

Integrated models

model		S-LSTM	SC-LSTM	T-LSTM	
early-fusion	$\left[\cdot,\cdot\right]$	6.74	7.18	8.24	
	\bigcirc	6.54	7.29	8.16	
	\otimes	6.69	7.04	8.19	
	$[\cdot, \cdot]$	7.50	7.72	8.49	
late-fusion	\oplus	7.19	7.47	8.53	
	\otimes	7.57	7.64	8.60	

Visual Genome V1.2

model		baseline	S-LSTM	T-LSTM
no context			6.44	8.16
late-fusion	$[\cdot, \cdot]$	6.98	7.76	9.03
	\oplus		7.06	8.71
	\otimes		7.63	8.52

Best practice: hyper-parameters

	#proposal	NMS_r1	NMS_r2	mAP
V1.0	100	0.5	0.4	8.67
	300	0.6	0.5	9.31
V1.2	100	0.5	0.5	9.47
	300	0.6	0.5	9.96

Sample result

is wearin helmet

a catche

blue shirt or umpire

ne catcher' shin guards

mpire earing bl shirt

Visualization

Benefit of joint inference

Conclusions

 Joint inference and context fusion increase the capacity of the model

 The flow of language and visual information in the network should be carefully designed

 The learned representation can potentially benefit other computer vision tasks, such as object detection and semantic segmentation.

Code Released!

 http://github.com/linjieyangsc/densecap Contact email: linjie.yang@snap.com