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Qualitative Results
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 Risk assessment contains two domains, (1) in the temporal N _ . _ _ _
domain (accident anticipation) and (2) in spatial domain (risky 1. We utilize the dynamic parameter layer to efficiently model the relative spatial relation and coupled appearance

region localization).

 Accident anticipation is to predict an accident before it occurs. 2. We use the generative property of RNN to self-train it to encode the behavior of the agent as well as generate (i.e.,

between agent and region (Panel (b)).

 Risky region localization is to spatially localize the regions in imagine) its future trajectory (Panel (c)).

the scene that might be involved in a future accident.

Our Epic Fail Dataset

Positive examples

3. The imagined future trajectory becomes new inputs to our model to assess risk in a longer term (Panel (c) to Panel (b)).

Relative Configuration

 We ask annotator to annotate the region causing
the failure event.

 The agents and the risky regions are annotated by
2D bounding boxes.

« We manually identify the time when accident
occurs in a subset of raw videos and sample short
videos of 3-4 seconds from the subset.

Rlsk assessment of all regions are illustrated with
respect to the agent (green box).

In our agent-centric perspective, the orange box
Indicates a risky region and the blue boxes indicate
non-risky regions.

We normalize the horizontal and vertical axes of the
agent separately to unit one.
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Quantitative Results -
Ground Truth No Acudent Predict: No Accident
Dataset EF SA Dataset FF A e e — e SE—
w/o memory | mAP (%) | ATTA (s) | mAP (%) | ATTA(s) || w/o memory | mAP (%) | mAP (%)
R*CNNI[1] |  68.6 247 40.7 2.64 R*CNN 347 4.7
e e N
RAI 724 2.13 488 2.62 RAT il | Bl | : g .
w memory | mAP (%) | ATTA (s) | mAP (%) | ATTA (s) wmemory | mAP (%) | mAP (%) 3 S 4 s
DSAI2] 45.7 1.16 48.1 1.34 % Ground Truth: No Accident Predict: Accident (T = 1.9 seconds)
L-R*CNN 3.5 35.6 e e T I . .
SP[3] 40.5 0.88 473 1.66 TRA 70 7 - *‘ |
L-R*CNN 69.6 2.54 374 3.13 i ‘ ‘
LRA 742 184 | 491 3.04 LRAIL | Ll | 44
L-RAI 75.1 2.23 514 3.01 Oracle 13.7 92.8
« ATTA: It's the average version of Time-to-accident (TTA) and it's used to % % /{mz\wseconds .
evaluate how early the model is able to predict an accident. I L o ] . time
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