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Silhouette:

Motivation
How can we learn shape models from grid-structured 
representation of shapes?

Probabilistic Aspect

Generative Aspect

Learning is challenging 
The binary variables entail non-Gaussian data
likelihoods, which often lead to intractable
marginals and posteriors.

High-dimensional data space with limited training
samples further increases the tendency to overfit.

The hyperparameters associated with model
complexity often result in computationally
expensive discrete searches.

ShapeOdds for modeling silhouettes

Natural Parameters SpaceLatent Space Silhouette Space (Hypercube)

Smoothness prior to avoid overfitting

Linear Subspace Nonlinear Manifold

Penalize badly twisted manifold 
through regularization

Sparsity-inducing automatic relevance 
determination (ARD) prior on loading vectors

Irrelevant factor during learning

Latent dimensionality

Hyperparameters

Noninformative
hyperpriors

Marginalization over the hyperparameters

Results
Realism: generate realistic samplesGeneralization: generate samples that 

differ from training images

Horses dataset

Bikes dataset

Tractable lower bound
Posterior distribution in the silhouette space

Posterior Distribution Approximate Posterior

Piecewise bounds [*]

Evidence lower bound to the log-marginal likelihood

truncated Gaussian moments (closed-form)

The second expectation term:

[*] Marlin, B.M., Khan, M.E. and Murphy, K.P., 2011. Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models. In ICML (pp. 633-640)
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