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A. Proximal minimization for LP relaxation
In this section, we give the detailed derivation of our proximal minimization algorithm for the LP relaxation.

A.1. Dual formulation

Let us first write the proximal problem (5) in the main paper in the standard form by introducing auxiliary variables zab:i.

min
y,z

∑
a

∑
i

φa:i ya:i +
∑
a,b6=a

∑
i

Kab

2
zab:i +

1

2λ
‖y − yk‖2 , (15a)

s.t. zab:i ≥ ya:i − yb:i ∀ a, b 6= a ∀ i ∈ L , (15b)
zab:i ≥ yb:i − ya:i ∀ a, b 6= a ∀ i ∈ L , (15c)∑

i

ya:i = 1 ∀ a ∈ {1 . . . n} , (15d)

ya:i ≥ 0 ∀ a ∈ {1 . . . n} ∀ i ∈ L . (15e)

Here, the shorthand notation
∑
a,b6=a denotes the summation over both variables a and b such that a 6= b, writing it explicitly:∑

a

∑
b 6=a. Furthermore, the shorthand ∀ a, b 6= a denotes for all a ∈ {1 . . . n} and b ∈ {{1 . . . n}, b 6= a}. Note that, these

shorthand notations are consistent with the main paper, and we mention it here to make it clearer.
We introduce three blocks of dual variables. Namely, α = {α1

ab:i, α
2
ab:i | a, b 6= a, i ∈ L} for the constraints in Eqs. (15b)

and (15c), β = {βa | a ∈ {1 . . . n}} for Eq. (15d) and γ = {γa:i | a ∈ {1 . . . n}, i ∈ L} for Eq. (15e), respectively. Now we
can write the Lagrangian associated with this primal problem [2]:

max
α,β,γ

min
y,z

L(α,β,γ,y, z) =
∑
a

∑
i

φa:i ya:i +
∑
a,b6=a

∑
i

Kab

2
zab:i +

1

2λ

∑
a

∑
i

(
ya:i − yka:i

)2
(16)

+
∑
a,b6=a

∑
i

α1
ab:i (ya:i − yb:i − zab:i) +

∑
a,b6=a

∑
i

α2
ab:i (yb:i − ya:i − zab:i)

+
∑
a

βa

(
1−

∑
i

ya:i

)
−
∑
a

∑
i

γa:i ya:i ,

s.t. α1
ab:i, α

2
ab:i ≥ 0 ∀ a, b 6= a ∀ i ∈ L ,
γa:i ≥ 0 ∀ a ∈ {1 . . . n} ∀ i ∈ L .

Here the vector α has p = 2n(n− 1)m elements.
Note that the dual problem is obtained by minimizing the Lagrangian over the primal variables (y, z). With respect to z,

the Lagrangian is linear and when ∇zL(α,β,γ,y, z) 6= 0, the minimization in z yields −∞. This situation is not useful as
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the dual function is unbounded. Therefore we restrict ourselves to the case where∇zL(α,β,γ,y, z) = 0. By differentiating
with respect to z and setting the derivatives to zero, we obtain

α1
ab:i + α2

ab:i =
Kab

2
∀ a, b 6= a ∀ i ∈ L . (17)

The minimum of the Lagrangian with respect to y is attained when ∇yL(α,β,γ,y, z) = 0. Before differentiating with
respect to y, let us rewrite the Lagrangian using Eq. (17) and reorder the terms:

L(α,β,γ,y, z) =
∑
a

∑
i

(φa:i − βa − γa:i) ya:i +
1

2λ

∑
a

∑
i

(
ya:i − yka:i

)2
+
∑
a,b6=a

∑
i

(
α1
ab:i − α2

ab:i

)
ya:i (18)

+
∑
a,b6=a

∑
i

(
α2
ba:i − α1

ba:i

)
ya:i +

∑
a

βa .

Now, by differentiating with respect to y and setting the derivatives to zero, we get
1

λ

(
ya:i − yka:i

)
= −

∑
b 6=a

(
α1
ab:i − α2

ab:i + α2
ba:i − α1

ba:i

)
+ βa + γa:i − φa:i ∀ a ∈ {1 . . . n} ∀ i ∈ L . (19)

Note that, here we used the notation
∑
b6=a to denote the summation over b such that b 6= a. This is not to be confused with

the shorthand notation
∑
a,b6=a, for example in Eq. (15a). Writing the above equation in vector form yields

1

λ

(
y − yk

)
= Aα +Bβ + γ − φ , (20)

where A ∈ IRnm×p and B ∈ IRnm×n, with

(Aα)a:i = −
∑
b6=a

(
α1
ab:i − α2

ab:i + α2
ba:i − α1

ba:i

)
, (21)

(Bβ)a:i = βa .

Proposition A.1 (Properties of matrix A). Let x ∈ IRnm. Then, for all a 6= b and i ∈ L,(
ATx

)
ab:i1

= xb:i − xa:i ,(
ATx

)
ab:i2

= xa:i − xb:i .

Here, the index ab : i1 denotes the element corresponding to α1
ab:i.

Proof. This can be easily proved by inspecting the matrix A.

Proposition A.2 (Properties of matrix B). The matrix B ∈ IRnm×n defined in Eq. (21) satisfies the following properties:

1. Let x ∈ IRnm. Then,
(
BTx

)
a

=
∑
i∈L xa:i for all a ∈ {1 . . . n}.

2. BTB = mI , where I ∈ IRn×n is the identity matrix.

3. BBT is a block diagonal matrix, with each block Ba = 1 for all a ∈ {1 . . . n}, where 1 ∈ IRm×m is the matrix of all
ones.

Proof. Note that, from Eq. (21), the matrix B simply repeats the elements βa m times. In particular, for m = 3, the matrix
B has the following form:

B =



1 0 · · · · · · · · · 0

1
...

...
1 0 · · · · · · · · ·

...
0 1

...... 1

...... 1

...... 0

......
... 0...
... 1...
... 1

0 · · · · · · · · · 0 1



. (22)



Therefore, multiplication by BT amounts to summing over the labels. From this, the other properties can be proved easily.

Now, using Eqs. (17) and (20), the dual problem can be written as:

min
α,β,γ

g(α,β,γ) =
λ

2
‖Aα +Bβ + γ − φ‖2 +

〈
Aα +Bβ + γ − φ,yk

〉
− 〈1,β〉 , (23)

s.t. γa:i ≥ 0 ∀ a ∈ {1 . . . n} ∀ i ∈ L ,

α ∈ C =

{
α

α1
ab:i + α2

ab:i = Kab

2 , ∀ a, b 6= a, ∀ i ∈ L
α1
ab:i, α

2
ab:i ≥ 0, ∀ a 6= b, ∀ i ∈ L

}
.

Here, 1 denotes the vector of all ones of appropriate dimension. Note that we converted our problem to a minimization one
by changing the sign of all the terms. This is exactly the dual problem given in (7) in the main paper.

A.2. Optimizing over β and γ

In this section, for a fixed value of αt, we optimize over β and γ. To this end, since the dual variables β are unconstrained,
the minimum value of the dual objective g is attained when ∇βg(αt,β,γ) = 0. Hence, by differentiating with respect to β
and setting the derivatives to zero, we obtain

β = −BT (Aαt + γ − φ)/m . (24)

Note that, from Proposition A.2, BTyk = 1 since yk ∈ M (defined in Eq. (4) in the main paper), and BTB = mI . Both
these identities are used to simplify the above equation. By substituting β in the dual problem (23) with the above expression,
the optimization problem over γ takes the following form:

min
γ

g(αt,γ) =
λ

2
‖D(Aαt + γ − φ)‖2 +

〈
D(Aαt + γ − φ),yk

〉
+

1

m

〈
1, Aαt + γ − φ

〉
, (25)

s.t. γ ≥ 0 ,

where D = I − BBT

m .

Proposition A.3 (Properties of matrix D). The matrix D = I − BBT

m satisfies the following properties:

1. D is block diagonal, with each block matrix Da = I − 1/m, where I ∈ IRm×m is the identity matrix and 1 ∈ IRm×m

is the matrix of all ones.

2. DTD = D .

Proof. From Proposition A.2, the matrix BBT is block diagonal and therefore D is block diagonal with each block matrix
Da = I−1/m. Note that the block matricesDa are identical. The second property can be easily proved using simple matrix
algebra.

Note that, since yk ∈ M, from Proposition A.2, BTyk = 1. Using this fact, the identity DTD = D, and by removing
the constant terms, the optimization problem over γ can be simplified:

min
γ

g(αt,γ) =
λ

2
γTDγ + 〈γ, λD(Aαt − φ) + yk〉 , (26)

s.t. γ ≥ 0 .

Furthermore, since D is block diagonal, we obtain

min
γ≥0

g(αt,γ) =
∑
a

min
γa≥0

λ

2
γTaDaγa + 〈γa, λDa

(
(Aαt)a − φa

)
+ yka〉 , (27)

where the notation γa denotes the vector {γa:i | i ∈ L}. Each of thesem dimensional quadratic programs (QP) are optimized
using the iterative algorithm [7]. Before we give the update equation, let us first write our problem in the form used in [7].
For a given a ∈ {1 . . . n}, this yields

min
γa≥0

1

2
γTaQγa − 〈γa,ha〉 , (28)



where

Q = λ

(
I − 1

m

)
, (29)

ha = −Q
(
(Aαt)a − φa

)
− yka .

This is exactly the QP given in (10). Hence, at each iteration, the element-wise update equation has the following form:

γa:i = γa:i

[
2 (Q−γa)i + h+a:i + c

(|Q|γa)i + h−a:i + c

]
, (30)

where Q− = max(−Q, 0), |Q| = abs(Q), h+a:i = max(ha:i, 0) and h−a:i = max(−ha:i, 0) and 0 < c � 1. These max and
abs operations are element-wise. We refer the interested reader to [7] for more detail on this update rule.

Note that, even though the matrix Q has m2 elements, the multiplication by Q can be performed in O(m). In particular,
the multiplication by Q can be decoupled into a multiplication by the identity matrix and a matrix of all ones, both of which
can be performed in linear time. Similar observations can be made for the matrices Q− and |Q|. Hence, the time complexity
of the above update is O(m). Once the optimal γ for a given αt is computed, the corresponding optimal β is given by
Eq. (24).

A.3. Conditional gradient computation

The conditional gradient with respect to α is obtained by solving the following linearization problem:

st = argmin
ŝ∈C

〈
ŝ,∇αg(αt,βt,γt)

〉
, (31)

where
∇αg(αt,βt,γt) = AT ỹt , (32)

with ỹt = λ
(
Aαt +Bβt + γt − φ

)
+ yk using Eq. (20).

Note that the feasible set C is separable, i.e., it can be written as C =
∏
a, b 6=a, i∈L Cab:i, with

Cab:i =
{

(α1
ab:i, α

2
ab:i) | α1

ab:i + α2
ab:i = Kab/2, α

1
ab:i, α

2
ab:i ≥ 0

}
. Therefore, the conditional gradient can be computed sep-

arately, corresponding to each set Cab:i. This yields

min
ŝ1ab:i,ŝ

2
ab:i

ŝ1ab:i∇α1
ab:i
g(αt,βt,γt) + ŝ2ab:i∇α2

ab:i
g(αt,βt,γt) , (33)

s.t. ŝ1ab:i + ŝ2ab:i = Kab/2 ,

ŝ1ab:i, ŝ
2
ab:i ≥ 0 ,

where, using Proposition A.1, the gradients can be written as:

∇α1
ab:i
g(αt,βt,γt) = ỹtb:i − ỹta:i , (34)

∇α2
ab:i
g(αt,βt,γt) = ỹta:i − ỹtb:i .

Hence, the minimum is attained at:

s1ab:i =

{
Kab/2 if ỹta:i ≥ ỹtb:i
0 otherwise , (35)

s2ab:i =

{
Kab/2 if ỹta:i ≤ ỹtb:i
0 otherwise .

Now, from Eq. (21), Ast takes the following form:(
Ast
)
a:i

= −
∑
b6=a

(
Kab

2
1[ỹta:i ≥ ỹtb:i]−

Kab

2
1[ỹta:i ≤ ỹtb:i] +

Kba

2
1[ỹtb:i ≤ ỹta:i]−

Kba

2
1[ỹtb:i ≥ ỹta:i]

)
, (36)

= −
∑
b

(
Kab1[ỹta:i ≥ ỹtb:i]−Kab1[ỹta:i ≤ ỹtb:i]

)
.

Here, we used the symmetry of the kernel matrix K to obtain this result. Note that the second equation is a summation over
b ∈ {1 . . . n}. This is true due to the identity Kaa1[ỹta:i ≥ ỹta:i] − Kaa1[ỹta:i ≤ ỹta:i] = 0 when b = a. This equation is
exactly the conditional gradient provided in Eq. (12) in the main paper.



A.4. Optimal step size

We need to find the step size δ that gives the maximum decrease in the objective function g given the descent direction st.
This can be formulated as the following optimization problem:

min
δ

λ

2

∥∥Aαt + δ
(
Ast −Aαt

)
+Bβt + γt − φ

∥∥2 +
〈
Aαt + δ

(
Ast −Aαt

)
+Bβt + γt − φ),yk

〉
− 〈1,β〉 , (37)

s.t. δ ∈ [0, 1] .

Note that the above function is optimized over the scalar variable δ and the minimum is attained when the derivative is zero.
Hence, setting the derivative to zero, we have

0 = λ
〈
δ
(
Ast −Aαt

)
+Aαt +Bβt + γt − φ, Ast −Aαt

〉
+
〈
yk, Ast −Aαt

〉
, (38)

δ =
〈Aαt −Ast, λ

(
Aαt +Bβt + γt − φ

)
+ yk〉

λ‖Aαt −Ast‖2
,

δ =
〈Aαt −Ast, ỹt〉
λ‖Aαt −Ast‖2

.

In fact, if the optimal δ is out of the interval [0, 1], the value is simply truncated to be in [0, 1].

B. Fast conditional gradient computation
In this section, we give the technical details of the original filtering algorithm and then our modified filtering algorithm.

To this end, we consider the following computation

∀ a ∈ {1 . . . n}, v′a =
∑
b

k(fa, fb) vb 1[ya ≥ yb] , (39)

with ya, yb ∈ [0, 1] for all a, b ∈ {1 . . . n}. Note that the above equation is the same as Eq. (14) in the main paper, except for
the multiplication by the scalar vb. In Section 4 in the main paper, the value vb was assumed to be 1, but here we consider the
general case where vb ∈ IR.

B.1. Original filtering algorithm

Let us first introduce some notations below. We denote the set of lattice points of the original permutohedral lattice with
P and the neighbouring feature points of lattice point l by N(l). This neighbourhood is shown in Fig. 5. Furthermore, we
denote the neighbouring lattice points of a feature point a by N̄(a). In addition, the barycentric weight between the lattice
point l and feature point b is denoted with wlb. Furthermore, the value at feature point b is denoted by vb and the value at
lattice point l is denoted by v̄l. Finally, the set of feature point scores is denoted by Y = {yb | b ∈ {1 . . . n}}, their set of
values is denoted by V = {vb | b ∈ {1 . . . n}} and the set of lattice point values is denoted by V̄ = {v̄l | l ∈ P}. The
pseudocode of the algorithm is given in Algorithm 2.

Algorithm 2 Original filtering algorithm [1]

Require: Permutohedral lattice P , set of feature point values V
V ′ ← 0 V̄ ← 0 V̄ ′ ← 0 . Initialization
for all l ∈ P do . Splatting

for all b ∈ N(l) do
v̄l ← v̄l + wlb vb

V̄ ′ ← k ⊗ V̄ . Blurring
for all a ∈ {1 . . . n} do . Slicing

for all l ∈ N̄(a) do
v′a ← v′a + wla v̄

′
l



Figure 5: A 2-dimensional hyperplane tessellated by the permutohedral lattice. The feature points are denoted with squares
and the lattice points with circles. The neighborhood of the center lattice point is shaded and, for a feature point, the
neighbouring lattice points are the vertices of the enclosing triangle.

B.2. Modified filtering algorithm

As mentioned in the main paper, the interval [0, 1] is discretized into H bins. Note that each bin h ∈ {0 . . . H − 1} is
associated with an interval which is identified as:

[
h

H−1 ,
h+1
H−1

)
. Note that the last bin (with bin id H − 1) is associated with

the interval [1, ·). Since yb ≤ 1, this bin contains the feature points whose scores are exactly 1. Given the score yb of the
feature point b, its bin/level can be identified as

hb = byb ∗ (H − 1)c , (40)

where b·c denotes the standard floor function.
Furthermore, during splatting, the values vb are accumulated to the neighbouring lattice point only if the lattice point is

above or equal to the feature point level. We denote the value at lattice point l at level h by v̄l:h. Formally, the barycentric
interpolation at lattice point l at level h can be written as

v̄l:h =
∑
b∈N(l)
hb≤h

wlb vb . (41)

Then, blurring is performed independently at each discrete level h. Finally, during slicing, the resulting values are interpolated
at the feature point level. Our modified algorithm is given in Algorithm 3. In this algorithm, we denote the set of values
corresponding to all the lattice points at level h as V̄h = {vl:h | l ∈ P}.

Algorithm 3 Modified filtering algorithm

Require: Permutohedral lattice P , set of feature point values V , discrete levels H , set of scores Y
V ′ ← 0 V̄ ← 0 V̄ ′ ← 0 . Initialization
for all l ∈ P do . Splatting

for all b ∈ N(l) do
hb ← byb ∗ (H − 1)c
for all h ∈ {hb . . . H − 1} do . Splat at the feature point level and above

v̄l:h ← v̄l:h + wlb vb
for all h ∈ {0 . . . H − 1} do V̄ ′h ← k ⊗ V̄h . Blurring at each level independently
for all a ∈ {1 . . . n} do . Slicing

ha ← bya ∗ (H − 1)c
for all l ∈ N̄(a) do

v′a ← v′a + wla v̄
′
l:ha

. Slice at the feature point level

Note that the above algorithm is given for the constraint 1[ya ≥ yb] (Eq. (14) in the main paper). However, it is fairly
easy to modify it for the 1[ya ≤ yb] constraint. In particular, one needs to change the interval identified by the bin h to:



Dataset Algorithm w(1) σ1 w(2) σ2:s σ2:c

MSRC MF 7.467846 1.000000 4.028773 35.865959 11.209644
DCneg 2.247081 3.535267 1.699011 31.232626 7.949970

Pascal MF 100.000000 1.000000 74.877398 50.000000 5.454272
DCneg 0.500000 3.071772 0.960811 49.785678 1.000000

Table 3: Parameters tuned for MF and DCneg on the MSRC and Pascal validation sets using Spearmint [5].

(
h−1
H−1 ,

h
H−1

]
. Using this fact, one can easily derive the splatting and slicing equations for the 1[ya ≤ yb] constraint. The

algorithm given above introduces an approximation to the gradient computation that depends on the number of discrete bins
H . However, this approximation can be eliminated by using a dynamic data structure which we briefly explain in the next
section.

B.2.1 Adaptive version of the modified filtering algorithm

Here, we briefly explain the adaptive version of our modified algorithm, which replaces the fixed discretization with a dynamic
data structure. Effectively, discretization boils down to storing a vector of length H at each lattice point. Instead of such a
fixed-length vector, one can use a dynamic data structure that grows with the number of different scores encountered at each
lattice point in the splatting and blurring steps. In the worst case, i.e., when all the neighbouring feature points have different
scores, the maximum number of values to store at a lattice point is

H = max
l
|N2(l)| , (42)

where N2(l) denotes the union of neighbourhoods of the lattice point l and its neighbouring lattice points (the vertices of the
shaded hexagon in Fig. 5). In our experiments, we observed that |N2(l)| is usually less than 100, with an average around
10. Empirically, however, we found this dynamic version to be slightly slower than the static one. We conjecture that this is
due to the static version benefiting from better compiler optimization. Furthermore, both the versions obtained results with
similar accuracy and therefore we used the static one for all our experiments.

C. Additional experiments
Let us first explain the pixel compatibility function used in the experiments. We then turn to additional experiments.

C.1. Pixel compatibility function used in the experiments

As mentioned in the main paper, our algorithm is applicable to any pixel compatibility function that is composed of a
mixture of Gaussian kernels. In all our experiments, we used two kernels, namely spatial kernel and bilateral kernel, similar
to [3, 4]. Our pixel compatibility function can be written as

Kab = w(1) exp

(
−|pa − pb|2

σ1

)
+ w(2) exp

(
−|pa − pb|2

σ2:s
− |Ia − Ib|2

σ2:c

)
, (43)

where pa denotes the (x, y) position of pixel a measured from top left and Ia denotes the (r, g, b) values of pixel a. Note that
there are 5 learnable parameters: w(1), σ1, w

(2), σ2:s, σ2:c. These parameters are cross validated for different algorithms on
each data set. The final cross validated parameters for MF and DCneg are given in Table 3. To perform this cross-validation,
we ran Spearmint for 2 days for each algorithm on both datasets. Note that, due to this time limitation, we were able to run
approximately 1000 Spearmint iterations on MSRC but only 100 iterations on Pascal. This is due to bigger images and a
larger validation set on the Pascal dataset. Hence, it resulted in less accurate energy parameters.

C.2. Additional segmentation results

In this section we provide additional segmentation results.
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Figure 6: Assignment energy as a function of time with the parameters tuned for MF for an image in (left) MSRC and (right)
Pascal. A zoomed-in version is shown next to each plot. Except for MF, all the algorithms were initialized with DCneg.
For the MSRC image, PROX-LP clearly outperforms SG-LP` by obtaining much lower energies in fewer iterations, and the
accelerated versions of our algorithm obtain roughly the same energy as PROX-LP but significantly faster. For the Pascal
image, however, no LP algorithm is able to improve over DCneg. Note that, in the Pascal dataset, for the MF parameters,
DCneg ended up classifying all pixel in most images as background (which yields low energy values) and no LP algorithm is
able to improve over it.

C.2.1 Results on parameters tuned for MF

The results for the parameters tuned for MF on the MSRC and Pascal datasets are given in Table 4. In Fig. 6, we show the
assignment energy as a function of time for an image in MSRC (the tree image in Fig. 7) and for an image in Pascal (the
sheep image in Fig. 7). Furthermore, we provide some of the segmentation results in Fig. 7.

Interestingly, for the parameters tuned for MF, even though our algorithm obtains much lower energies, MF yields the
best segmentation accuracy. In fact, one can argue that the parameters tuned for MF do not model the segmentation problem
accurately, but were tuned such that the inaccurate MF inference yields good results. Note that, in the Pascal dataset, when
tuned for MF, the Gaussian mixture coefficients are very high (see Table 3). In such a setting, DCneg ended up classifying all
pixel in most images as background. In fact, SG-LP` was able to improve over DCneg in only 1% of the images, whereas all
our versions improved over DCneg in roughly 25% of the images. Furthermore, our accelerated versions could not get any
advantage over the standard version and resulted in similar run times. Note that, in most of the images, the uncertain pixels
are in fact the entire image, as shown in Fig. 7.

C.2.2 More results on parameters tuned for DCneg

In Fig. 8, we show assignment energy as a function of time for more images on MSRC for the parameters tuned for DCneg.
The same behaviour as in Fig. 2 in the main paper is observed. For this parameter setting, more qualitative results are shown
in Fig. 9. Furthermore, some failure examples of PROX-LPacc on MSRC are shown in Fig. 10.

C.2.3 Summary

We have evaluated all the algorithms using two different parameter settings. Therefore, we summarize the best segmentation
accuracy obtained by each algorithm and the corresponding parameter setting in Table 5. Note that, on MSRC, the best
parameter setting for DCneg corresponds to the parameters tuned for MF. This is a strange result but can be explained by the
fact that, as mentioned in the main paper, cross-validation was performed using the less accurate ground truth provided with
the original dataset, but evaluation using the accurate ground truth annotations provided by [4].

Furthermore, in contrast to MSRC, the segmentation results of our algorithm on the Pascal dataset are not the state-of-
the-art, even with the parameters tuned for DCneg. This may be explained by the fact, that due to the limited cross-validation,
the energy parameters obtained for the Pascal dataset are not accurate. Therefore, even though our algorithm obtained lower
energies that was not reflected in the segmentation accuracy. Similar behaviour was observed in [3, 6].



MF5 MF DCneg
SG-
LP`

PROX-
LP

PROX-
LP`

PROX-
LPacc

Avg. E
(×104)

Avg. T
(s) Acc. IoU

M
SR

C

MF5 - 0 0 0 0 0 0 2366.6 0.2 81.14 54.60
MF 95 - 18 15 2 1 2 1053.6 13.0 83.86 59.75
DCneg 95 77 - 0 0 0 0 812.7 2.8 83.50 59.67
SG-LP` 95 80 48 - 2 0 1 800.1 37.3 83.51 59.68
PROX-LP 95 93 95 93 - 35 46 265.6 27.3 83.01 58.74
PROX-LP` 95 94 94 94 59 - 43 261.2 13.9 82.98 58.62
PROX-LPacc 95 93 93 93 49 46 - 295.9 7.9 83.03 58.97

Pa
sc

al

MF5 - - 1 1 0 0 0 40779.8 0.8 80.42 28.66
MF 93 - 3 3 0 0 1 20354.9 21.7 80.95 28.86
DCneg 93 87 - 0 0 0 0 2476.2 39.1 77.77 14.93
SG-LP` 93 87 1 - 0 0 0 2474.1 414.7 77.77 14.92
PROX-LP 94 90 24 24 - 4 9 1475.6 81.0 78.04 15.79
PROX-LP` 94 90 24 24 5 - 9 1458.9 82.7 78.04 15.79
PROX-LPacc 94 89 28 27 18 18 - 1623.7 83.9 77.86 15.18

Table 4: Results on the MSRC and Pascal datasets with the parameters tuned for MF. We show: the percentage of images
where the row method strictly outperforms the column one on the final integral energy, the average integral energy over the
test set, the average run time, the segmentation accuracy and the intersection over union score. Note that all versions of our
algorithm obtain much lower energies than the baselines. However, as expected, lower energy does not correspond to better
segmentation accuracy, mainly due to the less accurate energy parameters. Furthermore, the accelerated versions of our
algorithm are similar in run time and obtain similar energies compared to PROX-LP.

Image MF DCneg SG-LP` PROX-LP PROX-LP` Uncer.(DCneg)Uncer.(ours) PROX-LPacc Ground truth

Figure 7: Results with the parameters tuned for MF for images in (top two rows) MSRC and (bottom two rows) Pascal. The
uncertain pixels identified by DCneg and PROX-LPacc are marked in white. Note that, in MSRC all versions of our algorithm
obtain visually good segmentations similar to MF (or better). In Pascal, the segmentation results are poor except for MF, even
though we obtain much lower energies. We argue that, in this case, the energy parameters do not model the segmentation
problem accurately.

C.3. Effect of proximal regularization constant

We plot the assignment energy as a function of time for an image in MSRC (the tree image in Fig. 9) by varying the
proximal regularization constant λ. Here, we used the parameters tuned for DCneg. The plot is shown in Fig. 11. In summary,
for a wide range of λ, PROX-LP obtains similar energies with approximately the same run time.
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Figure 8: Assignment energy as a function of time with the parameters tuned for DCneg for some images in (cow, building,
person and car images shown in Fig. 9) MSRC. Note that PROX-LP clearly outperforms SG-LP` by obtaining much lower
energies in fewer iterations. Furthermore, the accelerated versions of our algorithm obtain roughly the same energy as
PROX-LP but significantly faster. In short the same behaviour as in Fig. 2 in the main paper is observed.

Algorithm MSRC Pascal
Parameters Avg. T (s) Acc. Parameters Avg. T (s) Acc.

MF5 MF 0.2 81.14 MF 0.8 80.42
MF MF 13.0 83.86 MF 21.7 80.95
DCneg MF 2.8 83.50 DCneg 3.7 80.43
SG-LP` MF 37.3 83.51 DCneg 84.4 80.49
PROX-LP DCneg 23.5 83.99 DCneg 106.7 80.63
PROX-LP` DCneg 6.3 83.94 DCneg 22.1 80.65
PROX-LPacc DCneg 3.7 84.16 DCneg 14.7 80.58

Table 5: Best segmentation results of each algorithm with their respective parameters, the average time on the test set and the
segmentation accuracy. In MSRC, the best segmentation accuracy is obtained by PROX-LPacc and in Pascal it is by MF. Note
that, on MSRC, the best parameter setting for DCneg corresponds to the parameters tuned for MF. This is due to the fact that
cross-validation was performed on the less accurate ground truth but evaluation on the accurate ground truth annotations
provided by [4]. Furthermore, the low segmentation performance of our algorithm on the Pascal dataset is may be due to
less accurate energy parameters resulted from limited cross-validation.



Image MF DCneg SG-LP` PROX-LP PROX-LP` Uncer.(DCneg)Uncer.(ours) PROX-LPacc Ground truth

Figure 9: Results with the parameters tuned for DCneg for images in (top six rows) MSRC and (bottom two rows) Pascal.
The uncertain pixels identified by DCneg and PROX-LPacc are marked in white. Note that all versions of our algorithm obtain
visually good segmentations. In addition, even though DCneg is less accurate (the percentatge of uncertain pixels for DCneg

is usually less than 1%) in predicting uncertain pixels, our algorithm marks most of the crucial pixels (object boundaries
and shadows) as uncertain. Furthermore, in the MSRC images, the improvement of PROX-LPacc over the baselines is clearly
visible and the final segmentation is virtually the same as the accurate ground truth.

Image MF DCneg Uncertain PROX-LPacc Ground truth

Figure 10: Failure examples for PROX-LPacc with the parameters tuned for DCneg in MSRC.

C.4. Modified filtering algorithm

We compare our modified filtering method, described in Section 4, with the divide-and-conquer strategy of [3]. To this
end, we evaluated both algorithms on one of the Pascal VOC test images (the sheep image in Fig. 9), but varying the image
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Figure 11: Assignment energy as a function of time for an image in MSRC, for different values of λ. The zoomed plot is shown
on the right. Note that, for λ = 0.1, 0.01, 0.001, PROX-LP obtains similar energies in approximately the same amount of
time.
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Figure 12: Speedup of our modified filtering algorithm over the divide-and-conquer strategy of [3] on a Pascal image, top:
spatial kernel (d = 2), bottom: bilateral kernel (d = 5). Note that our speedup grows with the number of pixels and is
approximately constant with respect to the number of labels and filter standard deviation.

size, the number of labels and the Gaussian kernel standard deviation. The respective plots are shown in Fig. 12. Note that,
as claimed in the main paper, speedup with respect to the standard deviation is roughly constant. Similar plots for an MSRC
image (the tree image in Fig. 9) are shown in Fig. 13. In this case, speedup is around 15 − 32, with around 23 − 32 in the
operating region of all versions of our algorithm.
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Figure 13: Speedup of our modified filtering algorithm over the divide-and-conquer strategy of [3] on a MSRC image, top:
spatial kernel (d = 2), bottom: bilateral kernel (d = 5). Note that our speedup grows with the number of pixels and is
approximately constant with respect to the number of labels and filter standard deviation.
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