

Supplementary Material

Joint Discriminative Bayesian Dictionary and Classifier Learning

1 Joint probability distribution

According to the proposed model, the joint probability distribution over the data of the c^{th} class can be expressed as:

$$\begin{aligned}
P(\{\mathbf{y}_i^c\}, \{\mathbf{h}_i^c\}, \boldsymbol{\Phi}, \boldsymbol{\Psi}, \{\mathbf{z}_i^c\}, \{\mathbf{s}_i^c\}, \{\mathbf{t}_i^c\}, \{\pi_k^c\}, \lambda_s^c, \lambda_t^c, \lambda_y, \lambda_h) = \\
\prod_{i=1}^{|\mathcal{I}_c|} \mathcal{N}(\mathbf{y}_i^c | \boldsymbol{\Phi}(\mathbf{z}_i^c \odot \mathbf{s}_i^c), 1/\lambda_{y_o} \mathbf{I}_L) \text{Gam}(\lambda_y | e_o, f_o) \mathcal{N}(\mathbf{h}_i^c | \boldsymbol{\Psi}(\mathbf{z}_i^c \odot \mathbf{t}_i^c), 1/\lambda_{h_o} \mathbf{I}_C) \text{Gam}(\lambda_h | e_o, f_o) \\
\prod_{k=1}^{|\mathcal{K}|} \mathcal{N}(\boldsymbol{\varphi}_k | \mathbf{0}, 1/\lambda_{\varphi_o} \mathbf{I}_L) \mathcal{N}(\boldsymbol{\psi}_k | \mathbf{0}, 1/\lambda_{\psi_o} \mathbf{I}_C) \\
\prod_{i=1}^{|\mathcal{I}_c|} \prod_{k=1}^{|\mathcal{K}|} \text{Bernoulli}(z_{ik}^c | \pi_{k_o}^c) \text{Beta}(\pi_k^c | \frac{a_o}{K}, \frac{b_o(K-1)}{K}) \\
\prod_{k=1}^{|\mathcal{K}|} \mathcal{N}(\mathbf{s}_i^c | \mathbf{0}, 1/\lambda_{s_o}^c \mathbf{I}_{|\mathcal{K}|}) \text{Gam}(\lambda_s^c | c_o, d_o) \mathcal{N}(\mathbf{t}_i^c | \mathbf{0}, 1/\lambda_{t_o}^c \mathbf{I}_{|\mathcal{K}|}) \text{Gam}(\lambda_t^c | c_o, d_o).
\end{aligned}$$

2 Gibbs sampling equations

We have made use of the following theorem [1] while driving the Gibbs Sampling equations for our model:

Theorem 1 [1]: If prior probability over \mathbf{y}_1 is given as $p(\mathbf{y}_1) = \mathcal{N}(\mathbf{y}_1 | \boldsymbol{\mu}_o, \boldsymbol{\Lambda}_o^{-1})$ and the likelihood function is defined as $p(\mathbf{y}_2 | \mathbf{y}_1) = \mathcal{N}(\mathbf{y}_2 | \mathbf{A}\mathbf{y}_1 + \mathbf{b}, \mathbf{L}^{-1})$, then the posterior probability distribution over \mathbf{y}_1 can be written as $p(\mathbf{y}_1 | \mathbf{y}_2) = \mathcal{N}(\mathbf{y}_1 | \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$, where:

$$\begin{aligned}
\boldsymbol{\Lambda} &= \boldsymbol{\Lambda}_o + \mathbf{A}^T \mathbf{L} \mathbf{A} \\
\boldsymbol{\mu} &= \boldsymbol{\Lambda}^{-1} (\mathbf{A}^T \mathbf{L} (\mathbf{y} - \mathbf{b}) + \boldsymbol{\Lambda}_o \boldsymbol{\mu}_o).
\end{aligned}$$

Below, we derive the sampling equations. The sampling is performed in our approach in an iterative manner. The sampling sequence is the same as the sequence of the equations given below.

Sample $\boldsymbol{\varphi}_k$: According to the proposed model, we can write the posterior distribution over the k^{th} dictionary atom $p(\boldsymbol{\varphi}_k | -)$ as follows:

$$p(\boldsymbol{\varphi}_k | -) \propto \prod_{i=1}^N \mathcal{N}(\mathbf{y}_i | \boldsymbol{\Phi}(\mathbf{z}_i \odot \mathbf{s}_i), \lambda_{y_o}^{-1} \mathbf{I}_L) \mathcal{N}(\boldsymbol{\varphi}_k | \mathbf{0}, \lambda_{\varphi_o}^{-1} \mathbf{I}_L).$$

We can write the mean of the likelihood function in terms of $\boldsymbol{\varphi}_k$ as:

$$\mathbf{y}_{i\varphi_k} = \mathbf{y}_i - \boldsymbol{\Phi}(\mathbf{z}_i \odot \mathbf{s}_i) + \boldsymbol{\varphi}_k(z_{ik} \odot s_{ik}).$$

where $\mathbf{y}_{i_{\varphi_k}}$ denotes the contribution of the k^{th} dictionary atom in approximating \mathbf{y}_i . Hence, the posterior distribution over φ_k can be re-written as:

$$p(\varphi_k | -) \propto \prod_{i=1}^N \mathcal{N}(\mathbf{y}_{i_{\varphi_k}} | \varphi_k(z_{ik} \cdot s_{ik}), \lambda_{y_o}^{-1} \mathbf{I}_L) \mathcal{N}(\varphi_k | \mathbf{0}, \lambda_{\varphi_o}^{-1} \mathbf{I}_L).$$

Exploiting the results of Theorem 1, the posterior over the dictionary atoms can be expressed as:

$$p(\varphi_k | -) = \mathcal{N}(\varphi_k | \boldsymbol{\mu}_k, \lambda_{\varphi}^{-1} \mathbf{I}_L), \text{ where,}$$

$$\lambda_{\varphi} = \lambda_{\varphi_o} + \lambda_{y_o} \sum_{i=1}^N (z_{ik} \cdot s_{ik})^2, \quad \boldsymbol{\mu}_k = \lambda_{y_o} \lambda_{\varphi}^{-1} \sum_{i=1}^N (z_{ik} \cdot s_{ik}) \mathbf{y}_{i_{\varphi_k}}.$$

We have arrived at the above expressions by placing $\mathbf{A} = \sum_{i=1}^N (z_{ik} \cdot s_{ik})$ and $\mathbf{b} = \mathbf{0}$ in the results of Theorem 1. Note that, we have intentionally dropped the super-script ‘ c ’ from the above expressions. This is because, the dictionary atoms are updated using the training data of all the classes simultaneously. The same is true for updating the columns $\boldsymbol{\psi}_k$ of the classifier $\boldsymbol{\Psi}$.

Sample $\boldsymbol{\psi}_k$: The posterior distribution $p(\boldsymbol{\psi}_k | -)$ over the k^{th} column of $\boldsymbol{\Psi}$ can be written as:

$$p(\boldsymbol{\psi}_k | -) \propto \prod_{i=1}^N \mathcal{N}(\mathbf{h}_i | \boldsymbol{\Psi}(\mathbf{z}_i \odot \mathbf{t}_i), \lambda_{h_o}^{-1} \mathbf{I}_C) \mathcal{N}(\boldsymbol{\psi}_k | \mathbf{0}, \lambda_{\psi_o}^{-1} \mathbf{I}_C).$$

With the same reasoning as for sampling φ_k , we can sample $\boldsymbol{\psi}_k$ from $p(\boldsymbol{\psi}_k | -) = \mathcal{N}(\boldsymbol{\psi}_k | \boldsymbol{\mu}_k, \lambda_{\psi}^{-1} \mathbf{I}_C)$, where

$$\lambda_{\psi} = \lambda_{\psi_o} + \lambda_{h_o} \sum_{i=1}^N (z_{ik} \cdot t_{ik})^2, \quad \boldsymbol{\mu}_k = \lambda_{h_o} \lambda_{\psi}^{-1} \sum_{i=1}^N (z_{ik} \cdot t_{ik}) \mathbf{h}_{i_{\psi_k}}.$$

Sample z_{ik}^c : Once the dictionary and the classifier have been sampled, we must sample z_{ik}^c based on the updated dictionary and the classifier. The posterior probability distribution over z_{ik}^c can be expressed as, $\forall i \in \mathcal{I}_c, \forall k \in \mathcal{K}$:

$$p(z_{ik}^c | -) \propto \mathcal{N}(\mathbf{y}_{i_{\varphi_k}}^c | \varphi_k(z_{ik}^c \cdot s_{ik}^c), \lambda_{y_o}^{-1} \mathbf{I}_L) \mathcal{N}(\mathbf{h}_{i_{\varphi_k}}^c | \boldsymbol{\psi}_k(z_{ik}^c \cdot t_{ik}^c), \lambda_{h_o}^{-1} \mathbf{I}_C) \text{ Bernoulli}(z_{ik}^c | \pi_{k_o}^c).$$

It is straight forward to show that based on the above mentioned posterior

$$\begin{aligned} p(z_{ik}^c = 1 | -) &\propto \pi_{k_o}^c \cdot \exp \left(- \frac{(\mathbf{y}_{i_{\varphi_k}}^c - \varphi_k s_{ik}^c)^T \lambda_{y_o} \mathbf{I}_L (\mathbf{y}_{i_{\varphi_k}}^c - \varphi_k s_{ik}^c)}{2} \right) \cdot \exp \left(- \frac{(\mathbf{h}_{i_{\psi_k}}^c - \boldsymbol{\psi}_k t_{ik}^c)^T \lambda_{h_o} \mathbf{I}_C (\mathbf{h}_{i_{\psi_k}}^c - \boldsymbol{\psi}_k t_{ik}^c)}{2} \right) \\ &\propto \pi_{k_o}^c \underbrace{\exp \left(- \frac{\lambda_{y_o}}{2} \mathbf{y}_{i_{\varphi_k}}^{c\top} \mathbf{y}_{i_{\varphi_k}}^c \right)}_{\xi_1} \cdot \underbrace{\exp \left(- \frac{\lambda_{y_o}}{2} (\varphi_k^T \varphi_k s_{ik}^{c2} - 2 s_{ik}^c \mathbf{y}_{i_{\varphi_k}}^{c\top} \varphi_k) \right)}_{\xi_2} \dots \\ &\quad \cdot \underbrace{\exp \left(- \frac{\lambda_{h_o}}{2} \mathbf{h}_{i_{\psi_k}}^{c\top} \mathbf{h}_{i_{\psi_k}}^c \right)}_{\xi_3} \cdot \underbrace{\exp \left(- \frac{\lambda_{h_o}}{2} (\boldsymbol{\psi}_k^T \boldsymbol{\psi}_k t_{ik}^{c2} - 2 t_{ik} \mathbf{h}_{i_{\psi_k}}^{c\top} \boldsymbol{\psi}_k) \right)}_{\xi_4}. \end{aligned}$$

Let $p_1 = \pi_{k_o}^c \xi_1 \xi_2 \xi_3 \xi_4$. We can derive an expression for $p(z_{ik}^c = 0 | -)$ in a similar fashion, that comes out to be:

$$p(z_{ik}^c = 0 | -) \propto (1 - \pi_{k_o}^c) \exp \left(-\frac{\lambda_{y_o}}{2} \mathbf{y}_{i_{\varphi_k}}^c \mathbf{y}_{i_{\varphi_k}}^c \right) \cdot \exp \left(-\frac{\lambda_{h_o}}{2} \mathbf{h}_{i_{\psi_k}}^c \mathbf{h}_{i_{\psi_k}}^c \right).$$

Let $p_o = (1 - \pi_{k_o}^c) \xi_1 \xi_3$. Using p_1 and p_o , z_{ik}^c can be sampled from the following normalized Bernoulli distribution:

$$z_{ik}^c \sim \text{Bernoulli} \left(\frac{p_1}{p_1 + p_o} \right).$$

Simplifying further:

$$z_{ik}^c \sim \text{Bernoulli} \left(\frac{\pi_{k_o}^c \xi}{1 - \pi_{k_o}^c + \xi \pi_{k_o}^c} \right),$$

where, $\xi = \xi_2 \xi_4$.

Sample s_{ik}^c : We can write the following regarding the posterior probability distribution over s_{ik}^c :

$$p(s_{ik}^c | -) \propto \mathcal{N}(\mathbf{y}_{i_{\varphi_k}}^c | \boldsymbol{\varphi}_k(z_{ik}^c, s_{ik}^c), \lambda_{y_o}^{-1} \mathbf{I}_L) \mathcal{N}(s_{ik}^c | 0, \lambda_{s_o}^{-1}).$$

Exploiting the results of Theorem 1, s_{ik}^c can be sampled from $\mathcal{N}(s_{ik}^c | \mu_s, \lambda_s^{-1})$, where:

$$\begin{aligned} \lambda_s &= \lambda_{s_o} + (\boldsymbol{\varphi}_k z_{ik}^c)^\top \lambda_{y_o} \mathbf{I}_L (\boldsymbol{\varphi}_k z_{ik}^c) \\ &= \lambda_{s_o} + \lambda_{y_o} z_{ik}^{c2} \boldsymbol{\varphi}_k^\top \boldsymbol{\varphi}_k, \\ \mu_s &= \lambda_s^{-1} \left((\boldsymbol{\varphi}_k z_{ik}^c)^\top \lambda_{y_o} \mathbf{I}_L \mathbf{y}_{i_{\varphi_k}}^c \right) \\ &= \lambda_s^{-1} \lambda_{y_o} z_{ik}^c \boldsymbol{\varphi}_k^\top \mathbf{y}_{i_{\varphi_k}}^c. \end{aligned}$$

Sample t_{ik}^c : Using the same reasoning as for s_{ik}^c , we can sample t_{ik}^c from $\mathcal{N}(t_{ik}^c | \mu_t, \lambda_t^{-1})$, where:

$$\lambda_t = \lambda_{t_o} + \lambda_{h_o} z_{ik}^{c2} \boldsymbol{\psi}_k^\top \boldsymbol{\psi}_k, \quad \mu_t = \lambda_t^{-1} \lambda_{h_o} z_{ik}^c \boldsymbol{\psi}_k^\top \mathbf{h}_{i_{\psi_k}}^c.$$

Sample π_k : We can write the posterior distribution over π_k^c as follows:

$$\begin{aligned} p(\pi_k^c | -) &\propto \prod_{i \in \mathcal{I}_c} \text{Bernoulli}(z_{ik}^c | \pi_{k_o}^c) \text{Beta}(\pi_{k_o}^c | a_o/K, b_o(K-1)/K) \\ &= {}^c \pi_{k_o}^c \left(1 - \pi_{k_o}^c \right)^{|\mathcal{I}_c| - \sum_{i=1}^{|\mathcal{I}_c|} z_{ik}^c} \times {}^c \pi_{k_o}^{\frac{a_o}{K} - 1} \left(1 - \pi_{k_o}^c \right)^{\frac{b_o(K-1)}{K} - 1} \\ &= {}^c \pi_{k_o}^c \left(1 - \pi_{k_o}^c \right)^{\frac{a_o}{K} + \sum_{i=1}^{|\mathcal{I}_c|} z_{ik}^c - 1} \left(\frac{b_o(K-1)}{K} + |\mathcal{I}_c| - \sum_{i=1}^{|\mathcal{I}_c|} z_{ik}^c - 1 \right) \\ &= \text{Beta} \left(\frac{a_o}{K} + \sum_{i=1}^{|\mathcal{I}_c|} z_{ik}^c, \frac{b_o(K-1)}{K} + |\mathcal{I}_c| - \sum_{i=1}^{|\mathcal{I}_c|} z_{ik}^c \right). \end{aligned}$$

Thus, we sample π_k^c from the above mentioned Beta probability distribution. Note that, in the above derivation we wrote π_k^c as ${}^c \pi_k$ for readability only.

Sample λ_s^c : To compute λ_s^c , we treat s_{ik}^c for all the dictionary atoms simultaneously (we do the same for λ_t^c below). We consider $\mathbf{s}_i^c \in \mathbb{R}^K$ to be a sample of a Gaussian distribution with isotropic precision. This simplification allows us to efficiently infer the posterior distribution over λ_s^c without significantly compromising the performance of our approach. The posterior distribution over λ_s^c can be expressed as:

$$\begin{aligned} p(\lambda_s^c | -) &\propto \prod_{i \in \mathcal{I}_c} \mathcal{N}(\mathbf{s}_i^c | \mathbf{0}, 1/\lambda_{s_o}^c \mathbf{I}_{|\mathcal{K}|}) \text{Gam}(\lambda_s^c | c_o, d_o) \\ &= \frac{1}{(2\pi)^{\frac{|\mathcal{I}_c| \cdot |\mathcal{K}|}{2}} \det(1/\lambda_{s_o}^c \mathbf{I}_{|\mathcal{K}|})^{\frac{|\mathcal{I}_c|}{2}}} \exp\left(-\frac{\lambda_{s_o}^c}{2} \sum_{i=1}^{|\mathcal{I}_c|} \mathbf{s}_i^{c\top} \mathbf{s}_i^c\right) \frac{1}{\Gamma(c_o)} h_o^{g_o} \lambda_{s_o}^{c \cdot d_o - 1} \exp(-d_o \lambda_{s_o}^c) \end{aligned}$$

where $\Gamma(\cdot)$ is the well-known gamma function and $\det(\cdot)$ denotes the determinant of a matrix. Neglecting the constants in the right hand side of the above equation, and making use of the property $\det(\lambda \mathbf{I}_{|\mathcal{K}|}) = \lambda^{|\mathcal{K}|}$:

$$\begin{aligned} p(\lambda_s^c | -) &\propto \lambda_{s_o}^{c \frac{|\mathcal{I}_c| \cdot |\mathcal{K}|}{2}} \exp\left(-\frac{\lambda_{s_o}^c}{2} \sum_{i=1}^{|\mathcal{I}_c|} \mathbf{s}_i^{c\top} \mathbf{s}_i^c\right) \lambda_{s_o}^{c \cdot d_o - 1} \exp(-d_o \lambda_{s_o}^c) \\ &= \lambda_{s_o}^{c \frac{|\mathcal{I}_c| \cdot |\mathcal{K}|}{2} + c_o - 1} \exp\left(-\lambda_{s_o}^c \left(\frac{1}{2} \sum_{i=1}^{|\mathcal{I}_c|} \mathbf{s}_i^{c\top} \mathbf{s}_i^c + d_o\right)\right) \\ &\propto \text{Gam}\left(\frac{|\mathcal{I}_c| |\mathcal{K}|}{2} + c_o, \frac{1}{2} \sum_{i=1}^{|\mathcal{I}_c|} \mathbf{s}_i^{c\top} \mathbf{s}_i^c + d_o\right). \end{aligned}$$

Therefore, we sample λ_s^c as:

$$\lambda_s^c \sim \text{Gam}\left(\frac{|\mathcal{I}_c| |\mathcal{K}|}{2} + c_o, \frac{1}{2} \sum_{i=1}^{|\mathcal{I}_c|} \|\mathbf{s}_i^c\|_2^2 + d_o\right),$$

where, $\|\cdot\|_2$ denotes the ℓ_2 -norm of a vector.

Sample λ_t^c : Similarly, we can sample λ_t^c from the following Gamma probability distribution:

$$\lambda_t^c \sim \text{Gam}\left(\frac{|\mathcal{I}_c| |\mathcal{K}|}{2} + c_o, \frac{1}{2} \sum_{i=1}^{|\mathcal{I}_c|} \|\mathbf{t}_i^c\|_2^2 + d_o\right).$$

Sample λ_y : The posterior over λ_y can be written as:

$$p(\lambda_y | -) \propto \prod_{i=1}^N \mathcal{N}(\mathbf{y}_i | \Phi(\mathbf{z}_i \odot \mathbf{s}_i), \lambda_{y_o}^{-1} \mathbf{I}_L) \text{Gam}(\lambda_y | e_o, f_o).$$

Again, we have intentionally dropped the superscript ‘ c ’ because the computation is performed over the training data of all classes simultaneously. Following similar steps as in the derivations for λ_s^c and λ_t^c we can show that λ_y must be sampled as follows:

$$\lambda_y \sim \text{Gam}\left(\frac{LN}{2} + e_o, \frac{1}{2} \sum_{i=1}^N \|\mathbf{y}_i - \Phi(\mathbf{z}_i \odot \mathbf{s}_i)\|_2^2 + f_o\right).$$

Sample λ_h : Correspondingly, λ_h can be sampled as the following:

$$\lambda_h \sim \text{Gam}\left(\frac{CN}{2} + e_o, \frac{1}{2} \sum_{i=1}^N \|\mathbf{h}_i - \Psi(\mathbf{z}_i \odot \mathbf{t}_i)\|_2^2 + f_o\right).$$

References

- [1] Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)