
Supplementary Material
Joint Discriminative Bayesian Dictionary and Classifier Learning

1 Joint probability distribution

According to the proposed model, the joint probability distribution over the data of the cth class can be
expressed as:

P ({yci}, {hci},Φ,Ψ, {zci}, {sci}, {tci}, {πck}, λcs, λct , λy, λh) =

|Ic|∏
i=1

N (yci |Φ(zci � sci), 1/λyoIL) Gam (λy|eo, fo)N (hci |Ψ(zci � tci), 1/λhoIC) Gam (λh|eo, fo)

|K|∏
k=1

N (ϕk|0, 1/λϕoIL)N (ψk|0, 1/λψoIC)

|Ic|∏
i=1

|K|∏
k=1

Bernoulli
(
zcik|πcko

)
Beta

(
πck|

ao
K
,
bo(K − 1)

K

)
|K|∏
k=1

N
(
sci |0, 1/λcsoI|K|

)
Gam (λcs|co, do)N

(
tci |0, 1/λctoI|K|

)
Gam (λct |co, do) .

2 Gibbs sampling equations

We have made use of the following theorem [1] while driving the Gibbs Sampling equations for our model:

Theorem 1 [1]: If prior probability over y1 is given as p(y1) = N (y1|µo,Λ−1
o ) and the likelihood function

is defined as p(y2|y1) = N (y2|Ay1 + b,L−1), then the posterior probability distribution over y1 can be
written as p(y1|y2) = N (y1|µ,Λ−1), where:

Λ = Λo + ATLA

µ = Λ−1(ATL(y − b) + Λoµo).

Below, we derive the sampling equations. The sampling is performed in our approach in an iterative manner.
The sampling sequence is the same as the sequence of the equations given below.

Sample ϕk: According to the proposed model, we can write the posterior distribution over the kth dictionary
atom p(ϕk|−) as follows:

p(ϕk|−) ∝
N∏
i=1

N (yi|Φ(zi � si), λ
−1
yo IL)N (ϕk|0, λ−1

ϕo IL).

We can write the mean of the likelihood function in terms of ϕk as:

yiϕk = yi −Φ(zi � si) +ϕk(zik � sik).

1



where yiϕk denotes the contribution of the kth dictionary atom in approximating yi. Hence, the posterior
distribution over ϕk can be re-written as:

p(ϕk|−) ∝
N∏
i=1

N (yiϕk |ϕk(zik.sik), λ
−1
yo IL)N (ϕk|0, λ−1

ϕo IL).

Exploiting the results of Theorem 1, the posterior over the dictionary atoms can be expressed as:

p(ϕk|−) = N (ϕk|µk, λ−1
ϕ IL),where,

λϕ = λϕo + λyo

N∑
i=1

(zik.sik)
2, µk = λyoλ

−1
ϕ

N∑
i=1

(zik.sik)yiϕk .

We have arrived at the above expressions by placing A =
N∑
i=1

(zik.sik) and b = 0 in the results of Theorem 1.

Note that, we have intentionally dropped the super-script ‘c’ from the above expressions. This is because,
the dictionary atoms are updated using the training data of all the classes simultaneously. The same is true
for updating the columns ψk of the classifier Ψ.

Sample ψk: The posterior distribution p(ψk|−) over the kth column of Ψ can be written as:

p(ψk|−) ∝
N∏
i=1

N (hi|Ψ(zi � ti), λ
−1
ho

IC)N (ψk|0, λ−1
ψo

IC).

With the same reasoning as for sampling ϕk, we can sample ψk from p(ψk|−) = N (ψk|µk, λ−1
ψ IC), where

λψ = λψo + λho

N∑
i=1

(zik.tik)
2, µk = λhoλ

−1
k

N∑
i=1

(zik.tik)hiψk .

Sample zcik: Once the dictionary and the classifier have been sampled, we must sample zcik based on the
updated dictionary and the classifier. The posterior probability distribution over zcik can be expressed as,
∀i ∈ Ic, ∀k ∈ K:

p(zcik|−) ∝ N (yciϕk
|ϕk(zcik.scik), λ−1

yo IL)N (hciϕk
|ψk(z

c
ik.t

c
ik), λ

−1
ho

IC) Bernoulli(zcik|πcko).

It is straight forward to show that based on the above mentioned posterior

p(zcik = 1|−) ∝ πcko . exp
(
−

(yciϕk
−ϕkscik)ᵀλyoIL(yciϕk

−ϕkscik)
2

)
. exp

(
−

(hiψk −ψkt
c
ik)

ᵀλhoIC(hiψk −ψkt
c
ik)

2

)

∝ πcko exp
(
− λyo

2
ycᵀiϕky

c
iϕk

)
︸ ︷︷ ︸

ξ1

.

ξ2︷ ︸︸ ︷
exp

(
− λyo

2
(ϕᵀ

kϕks
c 2
ik − 2sciky

cᵀ
iϕk
ϕk)

)
...

. exp
(
− λho

2
hcᵀiψk

hiψk

)
︸ ︷︷ ︸

ξ3

.

ξ4︷ ︸︸ ︷
exp

(
− λho

2
(ψᵀ

kψkt
c 2
ik − 2tikh

cᵀ
iψk
ψk)

)
.
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Let p1 = πckoξ1ξ2ξ3ξ4. We can derive an expression for p(zcik = 0|−) in a similar fashion, that comes out to be:

p(zcik = 0|−) ∝ (1− πcko) exp
(
− λyo

2
ycᵀiϕky

c
iϕk

)
. exp

(
− λho

2
hcᵀiψk

hciψk

)
.

Let po = (1 − πcko)ξ1ξ3. Using p1 and po, z
c
ik can be sampled from the following normalized Bernoulli

distribution:

zcik ∼ Bernoulli
(

p1

p1 + p0

)
.

Simplifying further:

zcik ∼ Bernoulli
(

πckoξ

1− πcko + ξπcko

)
,

where, ξ = ξ2ξ4.

Sample scik: We can write the following regarding the posterior probability distribution over scik:

p(scik|−) ∝ N (yciϕk
|ϕk(zcik.scik), λ−1

yo IL)N (scik|0, λ−1
so ).

Exploiting the results of Theorem 1, scik can be sampled from N (scik|µs, λ−1
s ), where:

λs = λso + (ϕkz
c
ik)

ᵀλyoIL(ϕkz
c
ik)

= λso + λyoz
c 2
ik ϕ

ᵀ
kϕk,

µs = λ−1
s

(
(ϕkz

c
ik)

ᵀλyoIL yciϕk

)
= λ−1

s λyoz
c
ikϕ

ᵀ
ky

c
iϕk
.

Sample tcik: Using the same reasoning as for scik, we can sample tcik from N (tcik|µt, λ−1
t ), where:

λt = λto + λhoz
c 2
ik ψ

ᵀ
kψk, µt = λ−1

t λhoz
c
ikψ

ᵀ
kh

c
iψk
.

Sample πk: We can write the posterior distribution over πck as follows:

p(πck|−) ∝
∏
i∈Ic

Bernoulli(zcik|πcko)Beta(πcko|ao/K, bo(K − 1)/K)

=cπ

|Ic|∑
i=1

zcik

ko
(1− πcko)

|Ic|−
|Ic|∑
i=1

zcik
×cπ

ao
K
−1

ko
(1− πcko)

bo(K−1)
K

−1

=cπ

ao
K

+
|Ic|∑
i=1

zcik−1

ko
(1− πcko)

bo(K−1)
K

+|Ic|−
|Ic|∑
i=1

zcik−1

= Beta

ao
K

+
|Ic|∑
i=1

zcik,
bo(K − 1)

K
+ |Ic| −

|Ic|∑
i=1

zcik

 .
Thus, we sample πck from the above mentioned Beta probability distribution. Note that, in the above
derivation we wrote πck as cπk for readability only.
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Sample λcs : To compute λcs, we treat scik for all the dictionary atoms simultaneously (we do the same for
λct below). We consider sci ∈ RK to be a sample of a Gaussian distribution with isotropic precision. This
simplification allows us to efficiently infer the posterior distribution over λcs without significantly compromising
the performance of our approach. The posterior distribution over λcs can be expressed as:

p(λcs|−) ∝
∏
i∈Ic
N (sci |0, 1/λcsoI|K|)Gam(λcs|co, do)

=
1

(2π)
|Ic|.|K|

2 det(1/λcsoI|K|)
|Ic|
2

exp
(
−
λcso
2

|Ic|∑
i=1

scᵀi sci

)
1

Γ(co)
hgoo λ

c do−1
so exp(−doλcso)

where Γ(.) is the well-known gamma function and det(.) denotes the determinant of a matrix. Neglecting
the constants in the right hand side of the above equation, and making use of the property det(λI|K|) = λ|K|:

p(λcs|−) ∝ λ
c
|Ic|.|K|

2
so exp

(
−
λcso
2

|Ic|∑
i=1

scᵀi sci

)
λco−1
so exp(−doλcso)

= λ
c
|Ic|.|K|

2
+co−1

so exp
(
− λcso(

1

2

|Ic|∑
i=1

scᵀi sci + do)
)

∝ Gam

 |Ic||K|
2

+ co,
1

2

|Ic|∑
i=1

scᵀi sci + do

 .
Therefore, we sample λcs as:

λcs ∼ Gam

 |Ic||K|
2

+ co,
1

2

|Ic|∑
i=1

||sci ||22 + do

 ,
where, ||.||2 denotes the `2-norm of a vector.

Sample λct : Similarly, we can sample λct from the following Gamma probability distribution:

λct ∼ Gam

 |Ic||K|
2

+ co,
1

2

|Ic|∑
i=1

||tci ||22 + do

 .

Sample λy : The posterior over λy can be written as:

p(λy|−) ∝
N∏
i=1

N (yi|Φ(zi � si), λ
−1
yo IL)Gam(λy|eo, fo).

Again, we have intentionally dropped the superscript ‘c’ because the computation is performed over the
training data of all classes simultaneously. Following similar steps as in the derivations for λcs and λct we can
show that λy must be sampled as follows:

λy ∼ Gam

(
LN

2
+ eo,

1

2

N∑
i=1

||yi −Φ(zi � si)||22 + fo

)
.

Sample λh : Correspondingly, λh can be sampled as the following:

λh ∼ Gam

(
CN

2
+ eo,

1

2

N∑
i=1

||hi −Ψ(zi � ti)||22 + fo

)
.
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