
Fast Fourier Color Constancy
Supplement

Jonathan T. Barron
barron@google.com

Yun-Ta Tsai
yuntatsai@google.com

1. Pretraining
In the paper we described the data term for our loss func-

tion f(·) which takes a toroidal PDF P (i, j), fits a bivariate
von Mises distribution to P , and then computes the negative
log-likelihood of the true white point L∗ under that distri-
bution. This loss is non-convex, and therefore may behave
erratically in the earliest training iterations. This issue is
compounded by our differentiable BVM fitting procedure,
which may be inacurate when P has a low concentration,
which is often the case in early iterations. For this reason,
we train our model in two stages: In the “pretraining” stage
we replace the data term in our loss function with a more
simple loss: straightforward logistic regression with respect
to P and some ground-truth PDF P ∗ (Eq. 2), and then in the
second training stage we use the data term described in the
paper while using the output of pretraining to initialize the
model. Because our regularization is also convex, using this
pretraining loss makes our entire optimization problem con-
vex and therefore straightforward to optimize, and (when
coupled with our use of LBFGS for optimization instead of
some SGD-like approach) also makes training determinis-
tic.

Computing a logistic loss is straightforward: we com-
pute a ground-truth PDF P ∗ from the ground-truth illumi-
nant L∗, and then compute a standard logistic loss.

P ∗(i, j) = mod

(
L∗
u − ulo
h

− i, n
)
< 1 (1)

∧mod

(
L∗
v − vlo
h

− j, n
)
< 1

fpretrain(P) = −
∑
i,j

P ∗(i, j) log(P (i, j)) (2)

This loss behaves very similarly to the loss used in CCC [1],
but it has the added benefit of being convex.

2. Backpropagation
The bivariate von Mises estimation procedure described

in the paper can be thought of as a “layer” in a deep learning
architecture, as our end-to-end training procedure requires

that we be able to backpropagate through the fitting proce-
dure and the loss computation. Here we present the gradi-
ents of the critical equations described in the paper.

∇µf (µ,Σ) = −2Σ−1

([
L∗
u

L∗
v

]
− µ

)
(3)

∇Σf (µ,Σ) = Σ−1 −Σ−1

([
L∗
u

L∗
v

]
− µ

)([
L∗
u

L∗
v

]
− µ

)T

Σ−1

∇P (i,j)µ =

(
nh

2π

) xi sin(θ(i))−yi cos(θ(i))
x2
i+y

2
i

xj sin(θ(j))−yj cos(θ(j))

x2
j+y

2
j

 (4)

∇P (i,j)Σ = h2
[
ī (̄i− 2 E [̄i]) , (̄i− E [̄i]) (j̄ − E [j̄])− E [̄i] E [j̄]
(̄i− E [̄i]) (j̄ − E [j̄])− E [̄i] E [j̄] , j̄ (j̄ − 2 E [j̄])

]
By chaining these gradients together we can backpropagate
the gradient of the loss back onto the input PDF P . Back-
propagating through the softmax operation and the convo-
lution (and illumination gain/bias) is straightforward and so
is not detailed here.

3. Deep Models
In the main paper we stated that Models N, O, and P use

an alternative parametrization to incorporate external fea-
tures during training and testing. This parameterization al-
lows our model to reason about things other than simple
pixel and edge log-chroma histograms, like semantics and
camera metadata. In the basic model presented in the main
paper, we learn a set of weights ({Fk}, G,B), where these
weights determine the shape of the filters used during con-
volution and the per-color gain/bias applied to the output of
that convolution. Let us abstractly refer to the concatena-
tion of these (preconditioned, Fourier-domain) weights as
w, and let the loss contributed by the data term for train-
ing data instance i be fi(w) (here fi(w) does not just apply
a loss, but first undoes the preconditioning transformation
and maps from our real FFT vector space to a complex 2D
FFT). Training our basic model can be thought of as simply
finding

arg min
w

∑
i

fi (w) (5)

1

To generalize our model, instead of learning a single model
w, we instead define a feature vector for each training in-
stance xi and learn a mapping from each xi to some wi such
that the loss for all {wi} is minimized. Instead of learning a
single w, we learn the weights in a small 2-layer neural net-
work with a ReLU activation function, where those network
weights define the mapping from features to FFCC param-
eters. The resulting optimization problem during training
is:

arg min
W1,b1,W2,b2

∑
i

fi (W2 max(0,W1xi + b1) + b2) (6)

Like in all other experiments we train using batch L-BFGS,
but instead of the two-stage training used in the shallow
model (a convex “pretraining” loss and a nonconvex final
loss), we have only one training stage: 64 iterations of
LBFGS, in which we minimize a weighted sum of the two
losses. Our input vectors {xi} are whitened before training,
and the whitening transformation is absorbed into W1 and
b1 after training so that unwhitened features can be used at
test-time. Our weights are initialized to random Gaussian
noise, unlike the shallow model which is initialized to all
zeros. Unlike our “shallow” model, in which w is regu-
larized during training, for our “deep” models we do not di-
rectly regularize each wi but instead indirectly regularize all
wi by minimizing the squared 2-norm of each Wi and bi.
This use of weight decay to regularize our model depends
critically on the frequency-domain preconditioning we use,
which causes a simple weight decay to indirectly impose
the careful smoothness regularizer that was constructed for
our shallow model. Note that our “deep” model is equiv-
alent to our “shallow” model if the input vector is empty
(ie, xi = []), as b2 would behave equivalently to w in that
case. We use 4 hidden units for Models N and O, and 8
hidden units for Model P (which uses the concatenated fea-
tures from both Models N and O). The magnitude of the
noise used for initialization and of the weight decay for each
layer of the network are tuned using cross-validation.

To produce the “metadata” features used in Models O
and P we use the EXIF tags included in the Gehler-Shi
dataset. Using external information in this way is unusual
in the color constancy literature, which is why this aspect of
our model is relegated to just two experiments (all figures
and other results do not use external metadata). In contrast,
camera manufacturers spend significant effort considering
sensor spectral properties and other sources of information
that may be useful when building a white balance system.
For example, knowing that two images came from two dif-
ferent sensors (as is the case in the Gehler-Shi dataset) al-
lows for a more careful treatment of absolute color and
black body radiation. And knowing the absolute brightness
of the scene (indicated by the camera’s exposure time, etc)
can be a useful cue for distinguishing between the bright

light of the sun and the relatively low light of man made
light sources. As the improved performance of Model O
demonstrates, this other information is indeed informative
and can induce a significant reduction in error. We use a
compact feature vector that encodes the outer product of the
exposure settings of the camera and the name of the camera
sensor itself, all extracted from the EXIF tags included in
the public dataset:

xi =vec((7)
[log(shutter speedi); log(f numberi); 1]

×[1Canon1D(camerai),1Canon5D(camerai), 1])

Note that the Gehler-Shi dataset uses images from two dif-
ferent Canon cameras, as reflected here. The log of the shut-
ter speed and F number are chosen as features because, in
theory, their difference should be proportional to the log of
the exposure value of the image, which should indicate the
amount of light receiving by the camera sensor.

The “semantics” features used in Models N and P are
simply the output of the CNN model used in [6], which was
run on the pre-whitebalance image after it is center-cropped
to a square and resized to 256 × 256. Because this image
is in the sensor colorspace, before passing it to the CNN
we scale the green channel by 0.6, apply a CCM, and apply
an sRGB gamma curve. These semantic features have a
modest positive effect.

4. Real Bijective FFT
In the paper we describeFv (Z), a FFT variant that takes

the 2D FFT of a n×n real-valued 2D image Z and then lin-
earizes it into a real-valued vector with no redundant values.
Having this FFT-like one-to-one mapping between real 2D
images and real 1D vectors enables our frequency-domain
preconditioner.

Our modified FFT function is defined as:

Fv (Z) =

Re(F (Z) (0 : n/2, 0))
Re(F (Z) (0 : n/2, n/2))
Re(F (Z) (0 : (n− 1), 1 : (n/2− 1)))
Im(F (Z) (1 : (n/2− 1), 0))
Im(F (Z) (1 : (n/2− 1), n/2− 1))
Im(F (Z) (0 : (n− 1), 1 : (n/2− 1)))

(8)

Where F (Z) (i, j) is the complex number at the zero-
indexed (i, j) position in the FFT of Z, and Re(·) and Im(·)
extract real and imaginary components, respectively. The
output of Fv (Z) is an n2-dimensional vector, as it must be
for our mapping to preserve all FFT coefficients with no re-
dundancy. To preserve the scale of the FFT through this
mapping we scale Fv (Z) by

√
2, ignoring the entries that

correspond to:

Re(F (Z) (0, 0))

Re(F (Z) (0, n/2))

Re(F (Z) (n/2, 0))

Re(F (Z) (n/2, n/2)) (9)

This scaling ensure that the magnitude of Z is preserved:

‖Fv (Z)‖2 = |F (Z)|2 (10)

To compute the inverse of Fv (·) we undo this scaling, undo
the vectorization by filling in a subset of the elements of
F (Z) from the vector representation, set the other elements
of F (Z) such that Hermitian symmetry holds, and the in-
vert the FFT.

5. Results
Because our model produces a complete posterior dis-

tribution over illuminants in the form of a covariance ma-
trix Σ, each of our illuminant estimates comes with a mea-
sure of confidence in the form of the entropy: 1

2 log |Σ|
(ignoring a constant shift). A low entropy suggests a tight
concentration of the output distribution, which tends to be
well-correlated with a low error. To demonstrate this we
present a novel error metric, which is twice the area under
the curve formed by ordering all images (the union of all
test-set images from each cross-validation fold) by ascend-
ing entropy and normalizing by the number of images. In
Figure 1 we visualize this error metric and show that our
entropy-ordered error is substantially lower than the mean
error for both of our datasets, which shows that a low en-
tropy is suggestive of a low error. We are not aware of any
other color constancy technique which explicitly predicts a
confidence measure, and so we do not compare against any
existing technique, but it can be demonstrated that if the en-
tropy used to sort error is decorrelated with error (or, equiv-
alently, if the error cannot be sorted due to the lack of the
means to sort it) that entropy-ordered error will on average
be equal to mean error.

To allow for a better understanding of our model’s per-
formance, we present images from the Gehler-Shi dataset
[3, 5] (Figures 2-11) and the Canon 1Ds MkIII camera from
the Cheng et al. dataset [2] (Figures 12-16). There results
were produced using Model J presented in the main pa-
per. For each dataset we perform three-fold cross valida-
tion, and with that we produce output predictions for each
image along with an error measure (angular RGB error) and
an entropy measure (the entropy of the covariance matrix of
our predicted posterior distribution over illuminants). The
images chosen here were selected by sorting images from
each dataset by increasing error and evenly sampling im-
ages according to that ordering (10 from Gehler-Shi, 5 from
the smaller Cheng dataset). This means that the first image
in each sequence is the lowest error image, and the last is
the highest. The rendered images include the color checker

(a) Gehler-Shi dataset [3, 5] (b) Cheng et al. dataset [2]
EO Error: 1.287 1.696

Mean Error: 1.775 2.121

Figure 1: By sorting each image by the entropy of its pos-
terior distribution we can show that entropy correlates with
error. Here we sort the images by ascending entropy and
plot the cumulative sum of the error, filling in the area un-
der that curve with gray. If entropy was not correlated with
error we would expect the area under the curve to match the
black line, and if entropy was perfectly correlated with er-
ror then the area under the curve would exactly match the
dashed red line. We report twice the area under the curve
as “entropy-ordered” error (mean error happens to be twice
the area under the diagonal line).

used in creating the ground-truth illuminants used during
training, but it should be noted that these color checkers are
masked out when these images are used during training and
evaluation. For each image we present: a) the input image,
b) the predicted bivariate von Mises distribution over illumi-
nants, c) our estimated illuminant and white-balanced im-
age (produced by dividing the estimated illuminant into the
input image), and d) the ground-truth illuminant and white-
balanced image. Our log-chroma histograms are visualized
using gray light de-aliasing to assign each (i, j) coordinate
a color, with a blue dot indicating the location/color of the
ground-truth illuminant, a red dot indicating our predicted
illuminant µ and a red ellipse indicating the predicted co-
variance of the illuminant Σ. The bright lines in the his-
togram indicate the locations where u = 0 or v = 0.
The reported entropy of the covariance Σ corresponds to
the spread of the covariance (low entropy = small spread).
We see that our low error predictions tend to have lower
entropies, and vice versa, confirming our analysis in Fig-
ure 1. We also see that the ground-truth illuminant tends
to lie within the estimated covariance matrix, though not
always for the largest-error images.

In Figure 17 we visualize a set of images taken from a
Nexus 6 in the HDR+ mode [4] after being white-balanced
by Model Q in the main paper (the version designed to run
on thumbnail images).

6. Color Rendering

All images are rendered by applying the RGB gains im-
plied by the estimated illuminant, applying some color cor-
rection matrix (CCM) and then applying an sRGB gamma-
correction function (the Clinear to Csrgb mapping in http:
//en.wikipedia.org/wiki/SRGB). For each cam-
era in the datasets we use we estimate our own CCMs us-
ing the imagery, which we present here. These CCMs do
not affect our illuminant estimation or our results, and are
only relevant to our visualizations. Each CCM is estimated
through an iterative least-squares process in which we al-
ternatingly: 1) estimate the ground-truth RGB gains for
each image from a camera by solving a least-squares sys-
tem using our current CCM, and 2) use our current gains
to estimate a row-normalized CCM using a constrained
least-squares solve. Our estimated ground-truth gains are
not used in this paper. For the ground-truth sRGB col-
ors of the Macbeth color chart we use the hex values
provided here: http://en.wikipedia.org/wiki/
ColorChecker#Colors which we linearize.

GehlerShi,Canon1D

[
2.2310 −1.5926 0.3616

−0.1494 1.4544 −0.3050
0.1641 −0.6588 1.4947

]

GehlerShi,Canon5D

[
1.7494 −0.8470 0.0976

−0.1565 1.4380 −0.2815
0.0786 −0.5070 1.4284

]

Cheng,Canon1DsMkIII

[
1.7247 −0.7791 0.0544

−0.1436 1.4632 −0.3195
0.0589 −0.4625 1.4037

]

Cheng,Canon600D

[
1.8988 −0.9897 0.0909

−0.2058 1.6396 −0.4338
0.0749 −0.7030 1.6281

]

Cheng,FujifilmXM1

[
1.4183 −0.2497 −0.1686

−0.2230 1.6449 −0.4219
0.0785 −0.5980 1.5195

]

Cheng,NikonD5200

[
1.3792 −0.3134 −0.0659

−0.0826 1.3759 −0.2932
0.0483 −0.4553 1.4070

]

Cheng,OlympusEPL6

[
1.6565 −0.4971 −0.1595

−0.3335 1.7772 −0.4437
0.0895 −0.7023 1.6128

]

Cheng,PanasonicGX1

[
1.5629 −0.5117 −0.0512

−0.2472 1.7590 −0.5117
0.1395 −0.8945 1.7550

]

Cheng,SamsungNX2000

[
1.5770 −0.4351 −0.1419

−0.1747 1.5225 −0.3477
0.0573 −0.6397 1.5825

]

Cheng,SonyA57

[
1.5963 −0.5545 −0.0418

−0.1343 1.5331 −0.3988
0.0563 −0.4026 1.3463

]

References
[1] J. T. Barron. Convolutional color constancy. ICCV, 2015.
[2] D. Cheng, D. K. Prasad, and M. S. Brown. Illuminant estima-

tion for color constancy: why spatial-domain methods work
and the role of the color distribution. JOSA A, 2014.

[3] P. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp.
Bayesian color constancy revisited. CVPR, 2008.

[4] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Bar-
ron, F. Kainz, J. Chen, and M. Levoy. Burst photography for
high dynamic range and low-light imaging on mobile cam-
eras. SIGGRAPH Asia, 2016.

[5] L. Shi and B. Funt. Re-processed version of
the gehler color constancy dataset of 568 images.
http://www.cs.sfu.ca/ colour/data/.

[6] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin,
B. Chen, and Y. Wu. Learning fine-grained image similarity
with deep ranking. CVPR, 2014.

http://en.wikipedia.org/wiki/SRGB
http://en.wikipedia.org/wiki/SRGB
http://en.wikipedia.org/wiki/ColorChecker#Colors
http://en.wikipedia.org/wiki/ColorChecker#Colors

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 2: A result from the Gehler-Shi dataset using Model J. Error = 0.02°, entropy = −6.48

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 3: A result from the Gehler-Shi dataset using Model J. Error = 0.26°, entropy = −6.55

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 4: A result from the Gehler-Shi dataset using Model J. Error = 0.46°, entropy = −6.91

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 5: A result from the Gehler-Shi dataset using Model J. Error = 0.63°, entropy = −6.37

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 6: A result from the Gehler-Shi dataset using Model J. Error = 0.83°, entropy = −6.62

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 7: A result from the Gehler-Shi dataset using Model J. Error = 1.19°, entropy = −6.71

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 8: A result from the Gehler-Shi dataset using Model J. Error = 1.61°, entropy = −6.88

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 9: A result from the Gehler-Shi dataset using Model J. Error = 2.35°, entropy = −6.32

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 10: A result from the Gehler-Shi dataset using Model J. Error = 3.84°, entropy = −5.28

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 11: A result from the Gehler-Shi dataset using Model J. Error = 21.64°, entropy = −4.95

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 12: A result from the Cheng dataset using Model J. Error = 0.12°, entropy = −6.82

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 13: A result from the Cheng dataset using Model J. Error = 0.64°, entropy = −6.69

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 14: A result from the Cheng dataset using Model J. Error = 1.37°, entropy = −6.48

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 15: A result from the Cheng dataset using Model J. Error = 2.69°, entropy = −5.82

(a) Input Image (b) Illuminant Posterior (c) Our prediction (d) Ground Truth

Figure 16: A result from the Cheng dataset using Model J. Error = 17.85°, entropy = −3.04

Figure 17: A sampling of unedited HDR+[4] images from a Nexus 6, after being processed with Model Q.

