
Supplementary Material
A. Additional Generated Images

Figure 1. Linear interpolation between two random noise vectors demonstrates that the model is able to separate out style from content in
the MNIST-M dataset. Each row is generated from the same MNIST digit, and each column is generated with the same noise vector.

B. Model Architectures and Parameters

We present the exact model architectures used for each experiment along with hyperparameters needed to reproduce
results. The general form for the generator, G, and discriminator, D, are depicted in Figure 2 of the paper. For G, we vary the
number of filters and the number of residual blocks. For D, we vary the amount of regularization and the number of layers.

Optimization consists of alternating optimization of the discriminator and task classifier parameters, referred to as the D
step, with optimization of the generator parameters, referred to as the G step.

Unless otherwise specified, the following hyperparameters apply to all experiments:

• Batch size 32

• Learning rate decayed by 0.95 every 20,000 steps

• All convolutions have a 3x3 filter kernel

• Inject noise drawn from a zero centered Gaussian with stddev 0.2 after every layer of discriminator

• Dropout every layer in discriminator with keep probability of 90%

• Input noise vector is 10 dimensional sampled from a uniform distribution U(−1, 1)

• We follow conventions from the DCGAN paper [36] for several aspects

– An L2 weight decay of 1e−5 is applied to all parameters
– Leaky ReLUs have a leakiness parameter of 0.2
– Parameters initialized from zero centered Gaussian with stddev 0.02
– We use the ADAM optimizer with β1 = 0.5

B.1 USPS Experiments

The Generator and Discriminator are identical to the MNIST-M experiments.
Loss weights:

• Base learning rate is 2e−4

• The discriminator loss weight is 1.0

• The generator loss weight is 1.0

• The task classifier loss weight in G step is 1.0

• There is no similarity loss between the synthetic and generated images

B.2 MNIST-M Experiments (Paper Table 1)

Generator: The generator has 6 residual blocks with 64 filters each
Discriminator: The discriminator has 4 convolutions with 64, 128, 256, and 512 filters respectively. It has the same overall
structure as paper Figure 2
Loss weights:

• Base learning rate is 1e−3

• The discriminator loss weight is 0.13

• The generator loss weight is 0.011

• The task classifier loss weight in G step is 0.01

• There is no similarity loss between the synthetic and generated images

B.3 LineMod Experiments

All experiments are run on a cluster of 10 TensorFlow workers. We benchmarked the inference time for the domain transfer
on a single K80 GPU as 30 ms for a single example (averaged over 1000 runs) for the LineMod dataset.
Generator: The generator has 4 residual blocks with 64 filters each
Discriminator: The discriminator matches the depiction in paper Figure 2. The dropout keep probability is set to 35%.

Parameters without masked loss (Paper Table 2):

• Base learning rate is 2.2e−4, decayed by 0.75 every 95,000 steps

• The discriminator loss weight is 0.004

• The generator loss weight is 0.011

• The task classification loss weight is 1.0

• The task pose loss weight is 0.2

• The task classifier loss weight in G step is 0

• The task classifier is not trained on synthetic images

• There is no similarity loss between the synthetic and generated images

Parameters with masked loss (Paper Table 5):

• Base learning rate is 2.6e−4, decayed by 0.75 every 95,000 steps.

• The discriminator loss weight is 0.0088

• The generator loss weight is 0.011

• The task classification loss weight is 1.0

• The task pose loss weight is 0.29

• The task classifier loss weight in G step is 0

• The task classifier is not trained on synthetic images

• The MPSE loss weight is 22.9

C. InfoGAN Connection

In the case that T is a classifier, we can show that optimizing the task loss in the way described in the main text amounts to
a variational approach to maximizing mutual information [2], akin to the InfoGAN model [7], between the predicted class
and both the generated and the equivalent source images. The classification loss could be re-written, using conventions from
[7] as:

Lt = −Exs∼Ds [Ey�∼p(y|xs) log q(y
�|xs)]

− Exf∼G(xs,z)[Ey�∼p(y|xf) log q(y
�|xf)] (7)

≥ −I(y�,xs)− I(y�,xf) + 2H(y), (8)

where I represents mutual information, H represents entropy, H(y) is assumed to be constant as in [7], y� is the random
variable representing the class, and q(y�|.) is an approximation of the posterior distribution p(y�|.) and is expressed in our
model with the classifier T . Again, notice that we maximize the mutual information of y� and the equivalent source and
generated samples. By doing so, we are effectively regularizing the adaptation process to produce images that look similar
for each class to the classifier T . This helps maintain the original content of the source image and avoids, for example,
transforming all objects belonging to one class to look like objects belonging to another.

D. Deep Reconstruction-Classification Networks

Ghifary et al. [17] report a result of 91.80% accuracy on the MNIST → USPS domain pair, versus our result of 95.9%. We
attempted to reproduce these results using their published code and our own implementation, but we were unable to achieve
comparable performance.

Figure 2. Additional generation examples for the LineMod dataset. The left 4 columns are generated images and depth channels, while the
corresponding right 4 columns are L2 nearest neighbors.

X

MNIST-M Task Classifier

Private

conv
5x5x32
ReLU

Shared

Max-pool 2x2
2x2 stride

conv
5x5x48
ReLU

Max-pool 2x2
2x2 stride

FC 100 units
ReLU

FC 100 units
ReLU

FC 10 units
sigmoid

LineMod Task Classifier

Private

conv
5x5x32
ReLU

Shared

Max-pool 2x2
2x2 stride

conv
5x5x64
ReLU

Max-pool 2x2
2x2 stride

FC 128 units
ReLU

Dropout 50%

FC 1 units
tanh

(angle)

FC 11 units
sigmoid
(class)

X

Figure 3. Task classifier (T) architectures for each dataset. We use the same task classifiers as [5, 14] to enable fair comparisons. The
MNIST-M classifier is used for USPS, MNIST, and MNIST-M classification. During training, the task classifier is applied to both the
synthetic and generated images when Lsource

t is enabled (see Paper Table 5). The ’Private’ parameters are only trained on one of these sets
of images, while the ’Shared’ parameters are shared between the two. At test time on the target domain images, the classifier is composed
of the Shared parameters and the Private parameters which are part of the generated images classifier. These first private layers allow the
classifier to share high level layers even when the synthetic and generated images have different channels (such as 1 channel MNIST and
RGB MNIST-M).

