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{martin.danelljan, goutam.bhat, fahad.khan, michael.felsberg}@liu.se

This supplementary document of [1] first provides the computational complexity analysis of the learning step in C-COT.
Section 2 provides additional details of the numerical optimization procedure used for learning the factorized convolution
operator (section 3.1 in the paper). We report relevant hardware specifications in section 3. Lastly, we provide additional
results on the VOT2016 and OTB-2015 benchmarks in section 4 and 5, respectively.

1. Complexity Analysis of the Learning
Here, we derive the computational complexity of the learning step in the baseline C-COT [2]. The learning itself is

completely dominated by the problem of solving the normal equations (eq. (5) in the paper),(
AHΓA+WHW

)
f̂ = AHΓŷ . (1)

Here, H denotes the conjugate transpose. This linear system is iteratively solved using the Conjugate Gradient (CG) method
[5, 6]. The dominating computation in CG is the evaluation of the left-hand side of (1), which is performed once per CG
iteration. This computation is performed as

AH(Γ(Af̂)) +WH(W f̂), (2)

where the parentheses are used to indicate the order in which the operations are performed. Since the conjugate symmetry in
the filter f̂ is preserved by the operations in (2), only half of the spectrum needs to be processed. We can therefore regard f̂
as a complex vector of

∑
dKd = DK̄ elements, where Kd is the bandwidth of channel d in the filter (see section 2 in the

paper), K̄ = 1
D

∑
dKd is the average number of Fourier coefficients per channel and D is the number of feature channels d.

The matrixA contains a diagonal blockAj,d of sizeK×Kd for each sample j ∈ {1, . . . ,M} and channel d ∈ {1, . . . , D}.
Here, we have definedK = maxdKd. The diagonal ofAj,d consists of the elements {Xd

j [k]b̂d[k]}Kd

k=0. As previously shown
for the discrete DCF case [3], the matrix A can be permuted to a block diagonal matrix Ã = ⊕K

k=0Ãk, where Ãk contains
the elements (Ãk)j,d = Xd

j [k]b̂d[k]. The operations f̂ 7→ Af̂ and v̂ 7→ AHv̂ can thus be implemented as block-wise dense
matrix-vector multiplications, with a total ofO(DMK̄) operations. Moreover, Γ is a diagonal matrix containing the weights
αj , giving O(MK̄) operations.

In the second term of (2), arising from the spatial regularization in the loss (eq. (3) in the paper), W and WH are con-
volution matrices with the kernel ŵ[k]. These operations have a complexity of O(DK̄Kw), where Kw are the number of
non-zero coefficients in ŵ (i.e. the size of the kernel). In practice however, the kernel ŵ[k] is small (typically 5× 5), having
a lesser impact on the overall complexity. To simplify the complexity expression, we therefore disregard this term. By taking
the number of CG iterations NCG into account, we thus obtain the final expression O(NCGDMK̄) for the complexity of the
learning step.

The preprocessing steps needed for the CG optimization only have a marginal impact on the overall learning time. The
most significant of these being the Fast Fourier Transform (FFT) of the feature map, having aO(

∑
dNd logNd) complexity,

where Nd is the resolution of feature channel d. But since the FFT computations correspond to roughly 1% of the total time
in C-COT, we exclude this part.
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2. Factorized Convolution Operator Optimization
Here, we provide more details regarding the optimization procedure for learning the factorized convolution operator

(section 3.1 in the paper). We consider the case of learning the factorized operator SPf{x} (eq. (6) in the paper) based on a
single sample (x, y),

E(f, P ) = ‖Sf,P {x} − y‖2L2 +

C∑
c=1

‖wf c‖2L2 + λ‖P‖2F . (3)

The loss is obtained by employing the factorized operator Sf,P {x} in the data term of the original loss (eq. (3) in the paper)
and adding a regularization on the Frobenius norm ‖P‖2F of P .

By applying the Parseval’s formula to the first two terms of (3) and utilizing the linearity and convolution properties of the
Fourier series coefficients, we obtain the equivalent loss (same as eq. (7) in the paper),

E(f, P ) =
∥∥∥ẑTP f̂ − ŷ

∥∥∥2

`2
+

C∑
c=1

∥∥∥ŵ ∗ f̂ c∥∥∥2

`2
+ λ‖P‖2F . (4)

Here, we have defined the interpolated feature map as z = J{x} to simplify notation. Note that the matrix-vector products
in (4) are performed point-wise,

(ẑTP f̂)[k] =

D∑
d=1

C∑
c=1

ẑd[k]pd,cf̂ c[k] , k ∈ Z . (5)

We use the Gauss-Newton method [5] to optimize the non-linear least squares problem (4). In each iteration i, the residual
in the data-term is linearized by performing a first order Taylor expansion at the current estimate (f̂i, Pi) (eq. (8) in the paper).
This gives the following quadratic sub-problem (eq. (9) in the paper),

Ẽ(f̂i,∆,∆P ) =
∥∥∥ẑTPif̂i,∆ + (f̂i ⊗ ẑ)T vec(∆P )− ŷ

∥∥∥2

`2
+

C∑
c=1

∥∥∥ŵ ∗ f̂ ci,∆∥∥∥2

`2
+ λ‖Pi + ∆P‖2F . (6)

To derive a simple formula for the normal equations of (6), we first introduce some notation. Let f̂ be the vectorization of
f̂i,∆, analogously to (1), and define ∆p = vec(∆P ). Further, let pc denote the cth column in Pi and set p = vec(Pi). We
then define the matrices,

AP =



0K−K1×2K1+1 · · · 0K−KC×2KC+1

diag

ẑ[−K1]Tp1

...
ẑ[K1]Tp1

 . . . diag

ẑ[−KC ]TpC

...
ẑ[KC ]TpC


0K−K1×2K1+1 · · · 0K−KC×2KC+1


, Bf =

(f̂i ⊗ ẑ)[−K]T

...
(f̂i ⊗ ẑ)[K]T

 . (7)

Here, AP has a structure very similar to the matrixA in (1), but contains only a single training sample. Note that the diagonal
blocks in AP are padded with zero matrices 0M×N along the columns to achieve the same number of 2K + 1 rows.

The Gauss-Newton sub-problem (6) can then be expressed as,

Ẽ(f̂ ,∆p) =
∥∥∥AP f̂ +Bf∆p− ŷ

∥∥∥2

2
+
∥∥W f̂

∥∥2

2
+ λ ‖p + ∆p‖22 . (8)

Here, the convolution matrix W and the vectorization ŷ are defined as in (1). The normal equations of (8) are obtained by
setting the gradient to zero, [

AH
PAP +WHW AH

PBf

BH
fAP BH

fBf + λI

] [
f̂

∆p

]
=

[
AH

P ŷ
BH

f ŷ − λp

]
. (9)

We employ the Conjugate Gradient method to iteratively solve the sub-problem (9).
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Figure 1. Expected Average Overlap (EAO) scores for each attribute on the VOT2016 dataset. Here, No Attribute denotes frames with no
labeled attribute.

3. Hardware Specifications
Our tracker is implemented in Matlab and uses Matconvnet [7] for deep feature extraction. The frame-rate measurements

of our CPU implementation were performed on a desktop computer with a 4-core Intel Core i7-6700 CPU at 3.4 GHz. The
frame-rate measurements of our GPU implementation were performed on a Tesla K40 GPU.

4. Additional Results on VOT2016
Here, we provide further experimental evaluation on the VOT2016 dataset [4] with 60 videos. The videos and the evalua-

tion toolkit can be obtained from http://www.votchallenge.net/vot2016/.
In the VOT2016 dataset, each frame is labeled with five different attributes: camera motion, illumination change, occlu-

sion, size change and motion change. Figure 1 visualizes the EAO of each attribute individually. Our approach achieves the
best results on all five attributes.

5. Additional Results on OTB-2015
Here, we report additional results on the OTB-2015 dataset [8] with 100 videos. The ground truth annotations and videos

are available at https://sites.google.com/site/benchmarkpami/.
In the OTB-2015 dataset, each video is annotated with 11 different attributes: scale variation, background clutter, out-of-

plane rotation, in-plane rotation, illumination variation, motion blur, fast motion, deformation, occlusion, out of view and low
resolution. The success plots of all attributes are shown in figure 2. Our ECO tracker achieves the best performance on 8 out
of 11 attributes. Further, our method improves over the baseline C-COT [2] on 9 out of 11 attributes. For a fair comparison,
we employ the same combination of deep and hand-crafted features in the baseline C-COT and as in our ECO tracker on
the OTB, TempleColor and UAV123 datasets (Conv1, Conv5 and HOG). Note that this set of features provides substantially
improved performance in C-COT compared to the original results reported in [2], where only deep convolutional features are
used.

http://www.votchallenge.net/vot2016/
https://sites.google.com/site/benchmarkpami/
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Success plot of deformation (44)
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Figure 2. Success plots on the OTB-2015 dataset [8]. The total success plot (top-left) is displayed along with the plots for all 11 attributes.
The title text indicate the name of the attribute and the number of videos associated with it. The area-under-the-curve scores for the top 10
trackers are shown in the legend.
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