Supplemental material:
Temporal Residual Networks for Dynamic Scene Recognition

Christoph Feichtenhofer
Graz University of Technology

feichtenhofer@tugraz.at

1. Baseline comparison algorithms

Slow feature analysis (SFA) approaches analyze tempo-
ral data to extract features that vary most slowly over time,
taking those to be most indicative of the stable properties
of the input [32]. The approach has been applied to dy-
namic scene recognition [28] by extracting features from
filter responses that are reputed to model primate V1 corti-
cal operations, as they result from local maxima of spatially
oriented, multiscale Gabor filters [25]. The slowest varying
features among those are identified by taking their temporal
derivatives and subsequently are encoded via soft assign-
ment with respect to a dictionary built with unsupervised
sampling. Following encoding, the features are pooled into
a feature vector via application of max-pooling to the entire
video in spatial pyramid regions [!8].

Bags of spacetime energies (BoSE) [ 1 1] is the penulti-
mate version of spatiotemporal energy approaches applied
to dynamic scenes [8, 10]. The approach extracted dense
measurements of spatiotemporal energy across a range of
scales and orientations as well as CIE-LUV colour mea-
surements. Here, the spatiotemporal features are augmented
with dense SIFT measurements [ 9] to more finely capture
spatial orientation. The descriptors are encoded by Im-
proved Fisher Vector (IFV) [21, 22] encoding with a vi-
sual word dictionary represented by a Gaussian Mixture
Model (diagonal covariance) with 64 centres. We average
the frame-level BoSE encodings over a video which sim-
plifies the the temporal slice-based SVM prediction of the
original BoSE system [ ! 1]. The simplification is employed
for equality in comparison to other baselines which also
train a single one-vs-rest SVMs for video classification.

Trajectory features (IDT) have been investigated with
respect to a variety of video understanding tasks, e.g.,
[20, 23, 24, 30]. Curiously, it appears that they have not
previously been applied to dynamic scene recognition. Re-
cently, however, they have provided the basis for a number
of outstanding approaches to action recognition as instan-
tiated in improved Dense Trajectories (IDTs) [31]; there-
fore, it is of interest to evaluate their performance on scene
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recognition, as follows. Trajectory features are extracted
across stabilized video sequences by concatenating a series
of optical flow vectors for densely extracted interest points.
Feature descriptors are aggregated across each trajectory in
terms of trajectory shape [30], HOG [5], HOF [17] and
MBH [6] measurements. Following extraction, the features
are encoded using (improved) Fisher Vectors (FVs) [22]
with dictionary represented by a Gaussian Mixture model
(diagonal covariance) having 256 centres. Before training
the GMM, all features are augmented with their normalized
(z,y) image coordinates as an efficient way to capture lo-
cation information. Details of extraction of the trajectories,
their descriptors and encoding are exactly as in their origi-
nal application to action recognition [31]. All DT and IDT
parameters are used as in [30, 31] and their publicly avail-
able code is used to extract the descriptors.

Spatial convolutional network (S-CNN) features [3]
are generated from the last convolutional layer of a VGG-
16 network [27]. The model is pre-trained on ImageNet
[7]. It has been shown that the features from such pre-
trained CNNss are transferable to many other vision domains
[2, 3, 9, 13]. This approach derives its features from the
last convolutional layer of a VGG-16, which uses features
from the last conv-layer of VGG-16. The resulting 512-
dimensional features are encoded using (improved) Fisher
Vectors (FVs) [22] with dictionary represented by a Gaus-
sian Mixture model (diagonal covariance) having 64 cen-
tres. Features from a single video are extracted with a stride
of 16 frames. Before encoding the features are augmented
with their normalized (z, y) image coordinates, as with the
above IDT approach.

Temporal convolutional network (T-CNN) uses a stack
of 10 optical flow frames as input, with optical flow ex-
tracted by a standard algorithm [1] and is first pre-trained
on the UCF101 action recognition dataset [16]. The final
model is a CNN-M-2048 network [2]. (In our preliminary
evaluation with this implementation, a recognition accuracy
of 82.6% on UCF101 (split 1) was achieved, which com-
pares favourably to the 81.2% reported originally [26].) The
same IFV encoding procedure as used for the spatial CNN
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above is employed, since this approach is common practice
in state-of-the-art video action recognition [12] and pro-
vided slightly better performance than using the output of
the last fully connected layer.

Spatiotemporal convolutional network (C3D) pro-
vides a spatiotemporal analogue to the spatial S-CNN. As a
generalization of spatial convolutional neural networks, 3D
spatiotemporal networks working over image spacetime,
(z,y,t), have potential to more directly capture temporal
aspects of the data even while maintaining spatial informa-
tion. Various previous efforts have been mounted to con-
sider this potential [14, 15, 29]. Here, C3D is considered, as
it has previously been applied to dynamic scene recognition
[29]. Features are extracted by applying the C3D network
model, pretrained on the Sports-1M dataset [15], densely to
16-frame snippets of the input video. As in [29], the fully
connected layer 6 outputs of each 16-frame clip are aver-
aged across the video into a 4096-dimensional descriptor.

Classification is performed as in the original approaches
[3, 11,26, 28,29, 31], with a linear SVM [4]. Before train-
ing, the descriptors are L2-normalized. All feature vec-
tors extracted from the training set are used to train one-
vs-rest linear SVM classifiers. The SVM’s regularization
loss trade-off parameter is set to C' = 100. During clas-
sification, each feature type is classified by its one-vs-rest
SVM to yield SVM scores for a test video and an overall
classification of the video according to the maximum score.

2. Video samples of the YUP++ dataset

The videos', static_camera_samples.avi and
moving_camera_samples.avi, show examples of the
static and moving camera subsets. The codec used is
H264 - MPEG-4 AVC. (High compression rates are ap-
plied in the supplemental material for the sake of constraints
on submission size.) Each video shows examples for all
20 classes, ordered alphabetically from left-to-right, top-
to-bottom: Beach, BuildingCollapse, Elevator, Escalator,
FallingTrees, Fireworks, ForestFire, Fountain, Highway,
LightningStorm, Marathon, Ocean, Railway, RushingRiver,
SkyClouds, Snowing, Street, Waterfall, WavingFlags, and
WindmillFarm.
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