
Supplemental material:
Temporal Residual Networks for Dynamic Scene Recognition

Christoph Feichtenhofer
Graz University of Technology

feichtenhofer@tugraz.at

Axel Pinz
Graz University of Technology

axel.pinz@tugraz.at

Richard P. Wildes
York University, Toronto
wildes@cse.yorku.ca

1. Baseline comparison algorithms

Slow feature analysis (SFA) approaches analyze tempo-
ral data to extract features that vary most slowly over time,
taking those to be most indicative of the stable properties
of the input [32]. The approach has been applied to dy-
namic scene recognition [28] by extracting features from
filter responses that are reputed to model primate V1 corti-
cal operations, as they result from local maxima of spatially
oriented, multiscale Gabor filters [25]. The slowest varying
features among those are identified by taking their temporal
derivatives and subsequently are encoded via soft assign-
ment with respect to a dictionary built with unsupervised
sampling. Following encoding, the features are pooled into
a feature vector via application of max-pooling to the entire
video in spatial pyramid regions [18].

Bags of spacetime energies (BoSE) [11] is the penulti-
mate version of spatiotemporal energy approaches applied
to dynamic scenes [8, 10]. The approach extracted dense
measurements of spatiotemporal energy across a range of
scales and orientations as well as CIE-LUV colour mea-
surements. Here, the spatiotemporal features are augmented
with dense SIFT measurements [19] to more finely capture
spatial orientation. The descriptors are encoded by Im-
proved Fisher Vector (IFV) [21, 22] encoding with a vi-
sual word dictionary represented by a Gaussian Mixture
Model (diagonal covariance) with 64 centres. We average
the frame-level BoSE encodings over a video which sim-
plifies the the temporal slice-based SVM prediction of the
original BoSE system [11]. The simplification is employed
for equality in comparison to other baselines which also
train a single one-vs-rest SVMs for video classification.

Trajectory features (IDT) have been investigated with
respect to a variety of video understanding tasks, e.g.,
[20, 23, 24, 30]. Curiously, it appears that they have not
previously been applied to dynamic scene recognition. Re-
cently, however, they have provided the basis for a number
of outstanding approaches to action recognition as instan-
tiated in improved Dense Trajectories (IDTs) [31]; there-
fore, it is of interest to evaluate their performance on scene

recognition, as follows. Trajectory features are extracted
across stabilized video sequences by concatenating a series
of optical flow vectors for densely extracted interest points.
Feature descriptors are aggregated across each trajectory in
terms of trajectory shape [30], HOG [5], HOF [17] and
MBH [6] measurements. Following extraction, the features
are encoded using (improved) Fisher Vectors (FVs) [22]
with dictionary represented by a Gaussian Mixture model
(diagonal covariance) having 256 centres. Before training
the GMM, all features are augmented with their normalized
(x, y) image coordinates as an efficient way to capture lo-
cation information. Details of extraction of the trajectories,
their descriptors and encoding are exactly as in their origi-
nal application to action recognition [31]. All DT and IDT
parameters are used as in [30, 31] and their publicly avail-
able code is used to extract the descriptors.

Spatial convolutional network (S-CNN) features [3]
are generated from the last convolutional layer of a VGG-
16 network [27]. The model is pre-trained on ImageNet
[7]. It has been shown that the features from such pre-
trained CNNs are transferable to many other vision domains
[2, 3, 9, 13]. This approach derives its features from the
last convolutional layer of a VGG-16, which uses features
from the last conv-layer of VGG-16. The resulting 512-
dimensional features are encoded using (improved) Fisher
Vectors (FVs) [22] with dictionary represented by a Gaus-
sian Mixture model (diagonal covariance) having 64 cen-
tres. Features from a single video are extracted with a stride
of 16 frames. Before encoding the features are augmented
with their normalized (x, y) image coordinates, as with the
above IDT approach.

Temporal convolutional network (T-CNN) uses a stack
of 10 optical flow frames as input, with optical flow ex-
tracted by a standard algorithm [1] and is first pre-trained
on the UCF101 action recognition dataset [16]. The final
model is a CNN-M-2048 network [2]. (In our preliminary
evaluation with this implementation, a recognition accuracy
of 82.6% on UCF101 (split 1) was achieved, which com-
pares favourably to the 81.2% reported originally [26].) The
same IFV encoding procedure as used for the spatial CNN

1

mailto:feichtenhofer@tugraz.at
mailto:axel.pinz@tugraz.at
mailto:wildes@cse.yorku.ca


above is employed, since this approach is common practice
in state-of-the-art video action recognition [12] and pro-
vided slightly better performance than using the output of
the last fully connected layer.

Spatiotemporal convolutional network (C3D) pro-
vides a spatiotemporal analogue to the spatial S-CNN. As a
generalization of spatial convolutional neural networks, 3D
spatiotemporal networks working over image spacetime,
(x, y, t), have potential to more directly capture temporal
aspects of the data even while maintaining spatial informa-
tion. Various previous efforts have been mounted to con-
sider this potential [14, 15, 29]. Here, C3D is considered, as
it has previously been applied to dynamic scene recognition
[29]. Features are extracted by applying the C3D network
model, pretrained on the Sports-1M dataset [15], densely to
16-frame snippets of the input video. As in [29], the fully
connected layer 6 outputs of each 16-frame clip are aver-
aged across the video into a 4096-dimensional descriptor.

Classification is performed as in the original approaches
[3, 11, 26, 28, 29, 31], with a linear SVM [4]. Before train-
ing, the descriptors are L2-normalized. All feature vec-
tors extracted from the training set are used to train one-
vs-rest linear SVM classifiers. The SVM’s regularization
loss trade-off parameter is set to C = 100. During clas-
sification, each feature type is classified by its one-vs-rest
SVM to yield SVM scores for a test video and an overall
classification of the video according to the maximum score.

2. Video samples of the YUP++ dataset
The videos1, static camera samples.avi and

moving camera samples.avi, show examples of the
static and moving camera subsets. The codec used is
H264 - MPEG-4 AVC. (High compression rates are ap-
plied in the supplemental material for the sake of constraints
on submission size.) Each video shows examples for all
20 classes, ordered alphabetically from left-to-right, top-
to-bottom: Beach, BuildingCollapse, Elevator, Escalator,
FallingTrees, Fireworks, ForestFire, Fountain, Highway,
LightningStorm, Marathon, Ocean, Railway, RushingRiver,
SkyClouds, Snowing, Street, Waterfall, WavingFlags, and
WindmillFarm.

References
[1] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.
In Proc. ECCV, 2004. 1

[2] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. In Proc. BMVC, 2014. 1

[3] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for
texture recognition and segmentation. In Proc. CVPR, 2015.
1, 2

1http://vision.eecs.yorku.ca/research/dynamic-scenes/

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995. 2

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proc. CVPR, 2005. 1

[6] N. Dalal, B. Triggs, and C. Schmid. Human detection using
oriented histograms of flow and appearance. In Proc. ECCV,
2006. 1

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In Proc. CVPR, 2009. 1

[8] K. Derpanis, M. Lecce, K. Daniilidis, and R. P. Wildes. Dy-
namic scene understanding: The role of orientation features
in space and time in scene classification. In Proc. CVPR,
2012. 1

[9] H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng,
P. Dollár, J. Gao, X. He, M. Mitchell, J. Platt, et al. From
captions to visual concepts and back. In Proc. CVPR, 2014.
1

[10] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Space-
time forests with complementary features for dynamic scene
recognition. In Proc. BMVC, 2013. 1

[11] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Bags of space-
time energies for dynamic scene recognition. In Proc. CVPR,
2014. 1, 2

[12] A. Gorban, H. Indrees, Y. Jiang, A. R. Zamir, I. Laptev,
M. Shah, and R. Sukthankar. Thumos challenge: Ac-
tion recognition with a large number of classes. http:
//wwwthumos.info/, 2015. 2

[13] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning
rich features from RGB-D images for object detection and
segmentation. In Proc. ECCV. 2014. 1

[14] S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural
networks for human action recognition. PAMI, 35(1):221–
231, 2013. 2

[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In Proc. CVPR, 2014. 2

[16] A. R. Z. Khurram Soomro and M. Shah. Ucf101: A dataset
of 101 human actions calsses from videos in the wild. Tech-
nical Report CRCV-TR-12-01, UCF Center for Research in
Computer Vision, 2012. 1

[17] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In Proc.
CVPR, 2008. 1

[18] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In Proc. CVPR, 2006. 1

[19] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004. 1

[20] B. Moore, S. Ali, R. Mehran, and M. Shah. Visual crowd
surveillance through a hydrodynamics lens. Commun. ACM,
54(12):64–73, 2011. 1

[21] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-
laries for image categorization. In Proc. CVPR, 2007. 1

[22] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
Fisher kernel for large-scale image classification. In Proc.
ECCV, 2010. 1

[23] M. Raptis and S. Soatto. Tracklet descriptors for action mod-
eling and video analysis. In Proc. ECCV, 2010. 1

[24] P. Sand and S. Teller. Particle video: Long-range motion

http://vision.eecs.yorku.ca/research/dynamic-scenes/
http://wwwthumos.info/
http://wwwthumos.info/


estimation using point trajectories. In Proc. CVPR, 2006. 1
[25] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-

gio. Robust object recognition with cortex-like mechanisms.
PAMI, 29(3):411–426, 2007. 1

[26] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Proc. NIPS,
2014. 1, 2

[27] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proc. ICLR,
2014. 1

[28] C. Theriault, N. Thome, and M. Cord. Dynamic scene clas-
sification: Learning motion descriptors with slow features
analysis. In Proc. CVPR, 2013. 1, 2

[29] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3D convolutional net-
works. In Proc. ICCV, 2015. 2
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