A. Appendices
A.l. Full Network-in-Network Results

Table 8: Network-in-Network CIFAR10

Model FLOPS Param. Accuracy CPU  GPU
x10%  x10° (ms)  (ms)

Orig. 2.22 9.67 0.9211 39.0 0.623

root-2 1.64 7.37 0.9209 31.2 0.551
root-4  1.23 4.55 0.9202 27.6 0.480
root-8 1.03 3.15 0.9215 244 0.482
root-16 0.93 2.45 0.9167 23.0 0.475

tree-2 1.48 4.88 0.9185 314 0.541
tree-4 1.15 3.31 0.9147 29.1 0.535
tree-8  0.99 2.53 0.9171 25.7  0.500
tree-16 0.91 2.14  0.9168 20.6 0.512

col-2  1.53 5.71 0.9197 28.8 0.568
col-4 1.18 3.73 0.9200 26.1 0.536
col-8 1.01 2.73 0.9192 23.0 0.475
col-16 0.92 2.24 0.9120 22.8 0.494

Table 8 shows the full results for the Network-in-
Network experiments on CIFAR10 on various hierarchical
network topologies.

A.2. Inter-Layer Covariance

To show the relationships between filters between adja-
cent convolutional layers, as illustrated in Fig. 1 , we calcu-
late the covariance of the responses from two adjacent fea-
turemaps, the outputs of convolutional layers with ¢; and ¢y
filters.

Let X; = [X;1;X4,2; .. .;X;,n] be the matrix of N sam-
ples x; ,, from the ¢; dimensional featuremap for layer . We
consider each pixel across the two featuremaps to be a sam-
ple, and thus each vector x; ,, is a single pixel filter response
of dimension ¢;. If two featuremaps have different spa-
tial dimensions, due to pooling, we up-sample the smaller
featuremap (with nearest neighbor interpolation) such that
there are the same number of pixels (and thus samples) in
each featuremap.

Given two samples X7, Xy with zero mean (i.e. mean
subtracted) for two adjacent featuremaps, we calculate the
inter-layer covariance,

cov(X1,X2) = E[X1X3], (D)

= — X, XTI )

While this shows the covariance between layers, it is
conflated with the inherent covariances within X; and X5
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from the data (as shown in Fig. 10a). We can more clearly
show the covariance between layers by first whitening (us-
ing ZCA [22]) the samples in X7 and X5. For a covariance
matrix,

1
X, X)=——XX" 3
cov(X, X) N1 ) 3)
The ZCA whitening transformation is given by,
1
W=vN-1(xx") *. 4)

Since the covariance matrix is symmetric, it is easily di-
agonalizable (i.e. PCA),

1

cov(X,X) = mXXT, 3)
1 T

= ¥ 1 1PDP , (6)

@)

where P is a orthogonal matrix and D a diagonal matrix.
This diagonalization allows a simplified calculation of the
whitening transformation (see the derivation in Appendix A

of [22]),
W =+vN—-1PD 2P", (8)

where D™ 7 is simply D with an element-wise power of — %
The covariance between the whitened featuremap re-
sponses is then,

cov(W1 X1, WoX) = E (W1 X1) (W2 X2)']. (9

Figure 11 shows the per-layer (intra-layer) filter corre-
lation. This shows the correlation of filters is more struc-
tured in root-networks, filters are learned to be linearly com-
bined into useful filters by the root module, and thus filters
are often grouped together with other filters they correlate
strongly with.
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Figure 11: Network-in-Network Intra-Layer Correlation. Absolute Correlation of filters within each layer of a NiN model variant.
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Figure 12: Filter Inter-layer Covariance conv2c—conv3a. The block-diagonal sparsity learned by a root-unit is visible in the correlation of filters on layers
conv3a and conv2c in the NiN network.
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Figure 13: Network-in-Network Inter-layer Absolute Covariance. The inter-layer covariance for all layers in variants of the NiN network.
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Figure 14: ResNet 50 conv1 filters. With filter groups
directly after convl, in conv2, some of the organization
of filters can be directly observed, and give us intuition as
to what is happening in root networks.

Figure 12 shows the complete, enlarged version of Fig. 6,
showing the inter-layer filter covariances between layers
conv3a and conv2c. Figure 13 shows the full set of inter-
layer covariances between all convolutional layers in the
NiN models. Block-diagonal sparsity is visible on the lay-
ers with filter groups, conv2a and conv3a. This block-
diagonal is shown for all variants in more detail in Fig. 13.

A.3. The Affect on Image-level Filters of Root Mod-
ules

In the ResNet root models, filter groups are used in
conv2, directly after the image level filters of conv1 some
of the organization of filters can be directly observed, and
give us intuition as to what is happening in root networks.
Figure 14 shows the convO0 filters learned for each of the
ResNet 50 models. It is apparent that the filters learned in
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Figure 15: ResNet 50 Layer-wise FLOPS/Parameters.

these networks are very similar to those learned in the orig-
inal model, although sometimes inverted or with a different
ordering. This ordering is somewhat consistent in models
with filter groups however, even with different random ini-
tializations. This is because filter groups cause filters with
strong mutual information to be grouped adjacent to each
other.

For example, in the root-8 network (Fig. 14d), each row
of filters corresponds to the input of an independent filter
group in conv2. We can see that the first row primarily
is composed of filters giving various directions of the same
color gradient. These filters can be combined in the next
layer to produce color edges easily. Due to the shortcut
layer and the learned combinations of filters however, not
all filter groupings are so obvious.

A 4. Layer-wise Compute/Parameter Savings

Figure 15 shows the difference in compute and param-
eters for each layer in a standard ResNet-50 model and a
root-64 variant. The layers in the original networks with
the highest computational complexity are clearly the spa-
tial convolutional layers, i.e. layers with 3x3 spatial fil-
ters. When instead a root-module is used, the computa-
tional complexity of these layers is reduced dramatically.
While the low dimensional embedding layers (1x 1) are not
changed, these have less than half the compute of the spa-
tial convolution layers. The number of parameters in spatial
convolution layers with large numbers of input channels,
which increase towards the end of the network, are simi-
larly reduced.



