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1. Quantitative Results

In the following we present additional quantitative results, some of which were already mentioned in the paper. We report
average BLEU, oracle BLEU, average METEOR, oracle METEOR, unique questions (UQ) and unseen unique questions for
the VQG-COCO, the VQG-Flickr, and the VQG-Bing test sets. Fig. 1 shows the average and oracle BLEU scores for the
three test sets. Fig. 2 shows the average and oracle METEOR scores for the same. For diversity metrics, Fig. 3 shows the
percentage of unique questions for different sampling schemes. Fig. 4 shows the percentage of unique questions generated
by our model which are unseen in training. More specifically in Tab. 1, Tab. 2, and Tab. 3 we report these metrics averaged
over all the epochs. In Tab. 4, Tab. 5, and Tab. 6 we report the maximum of these metrics over all the epochs. For most of
the metrics we observe a uniform distribution within [—20, 20] with 500 samples to perform best.

2. Qualitative Results

In Fig. 5, Fig. 6 and Fig. 7 we illustrate images and some questions that our model generated. Lighter boxes are for
more literal questions which are based on object shape, color or count and can be easily answered by looking at the image.
Darker colored boxes are for inferential questions, which need prior (human-like) understanding of the objects or scene.
The questions with bold ticks (¢) are questions generated by our VQG model which never occurred during training (what
we refer to as ‘unseen’ questions). We demonstrate the diversity of our model by showing a variety of literal to inferential
questions as well as ‘unseen’ questions.

Sampling Avg. Bleu Oracle Bleu Avg. Meteor Oracle Meteor UQ  Unseen UQ

N1, 100 0.331 0.37 0.188 0.207 1.78 6.54
N1, 500 0.328 0.376 0.187 0.211 2.04 7.44
U10, 100 0.305 0.447 0.178 0.254 2.04 7.44
U10, 500 0.295 0.468 0.175 0.269 12.52 16.22
U20, 100 0.295 0.486 0.172 0.281 17.02 13.66
U20, 500 0.283 0.519 0.168 0.307 33.41 19.6

Table 1: VQG-COCO Summary of metrics. Metrics averaged over the epochs.

Within those plots we also show some failure cases. We observe our model to face one of the following challenges:
recognition, co-occurrence or natural language based challenges. To repeat, we term failures due to incorrect recognition
(attributed to weak feature learning or description) as recognition based failures. Cases where a question is incorrectly
generated due to its frequent occurrence with a particular object category are called co-occurrence based failures. Generated
sentences with mistakes in the language structure are referred to as natural language based failures. We give examples of
each for all three datasets.

* indicates equal contributions.
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Figure 1: BLEU Score: Oracle-BLEU and average-BLEU score over epochs. Experiments with various sampling procedures

and results compared to the performance of the baseline model [1] as line in black bold color. (Legend same as METEOR

plots)
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Figure 2: METEOR Score: Oracle-METEOR and average-METEOR score over epochs. Experiments with various sampling
procedures and results compared to the performance of the baseline model [ 1] (line in black color).
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Figure 3: Generative strength: Number of unique questions averaged over the number of images. Shows that sampling the
latent space by Uniform distribution leads to more unique questions per image.
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sampling from the uniform distributions for the latent space generates more diverse questions.

Sampling Avg. Bleu Oracle Bleu Avg. Meteor Oracle Meteor UQ  Unseen UQ

N1, 100 0.305 0.346 0.165 0.181 1.88 9.64
N1, 500 0.302 0.351 0.165 0.185 2.18 10.87
U10, 100 0.283 0.417 0.160 0.221 9.07 16.31
U10, 500 0.275 0.436 0.158 0.234 14.73 20.59
U20, 100 0.278 0.453 0.157 0.245 18.93 16.66
U20, 500 0.267 0.483 0.154 0.267 39.01 22.6

Table 2: VQG-Flickr Summary of metrics. Metrics averaged over the epochs.

Sampling Avg. Bleu Oracle Bleu Avg. Meteor Oracle Meteor UQ  Unseen UQ

NI, 100 0.295 0.336 0.165 0.183 1.98 15.56
N1, 500 0.292 0.342 0.164 0.187 2.31 17.00
U10, 100 0.277 0.415 0.159 0.228 10.17 23.43
U10, 500 0.267 0.436 0.157 0.242 16.94 28.83
U20, 100 0.272 0.452 0.155 0.252 21.06 23.65
U20, 500 0.261 0.482 0.152 0.273 44.65 30.73

Table 3: VQG-Bing Summary of metrics. Metrics averaged over the epochs.

Sampling Avg. Bleu Oracle Bleu Avg. Meteor Oracle Meteor UQ  Unseen UQ

N1, 100 0.356 0.393 0.199 0.219 1.98 10.76
N1, 500 0.352 0.401 0.198 0.222 2.32 12.19
uU10, 100 0.328 0.488 0.19 0.275 9.82 18.78
U10, 500 0.326 0.511 0.186 0.291 16.14 24.32
U20, 100 0.316 0.544 0.183 0.312 22.01 19.75
U20, 500 0.311 0.579 0.177 0.342 46.1 27.88

Table 4: VQG-COCO Summary of metrics. These metric values are the maximum over the epochs.

Sampling Avg. Bleu Oracle Bleu Avg. Meteor Oracle Meteor UQ  Unseen UQ

N1, 100 0.335 0.365 0.176 0.191 2.17 15.2
N1, 500 0.333 0.374 0.174 0.193 2.63 17.1
U10, 100 0.314 0.456 0.168 0.241 12.21 25.65
U10, 500 0.31 0.479 0.167 0.254 21.14 32.12
U20, 100 0.304 0.509 0.166 0.276 26.83 24.98
U20, 500 0.299 0.541 0.163 0.3 59.57 33.81

Table 5: VQG-Flickr Summary of metrics. These metric values are the maximum over the epochs.



Sampling Avg. Bleu Oracle Bleu Avg. Meteor Oracle Meteor UQ  Unseen UQ

N1, 100 0.316 0.357 0.175 0.194 2.32 22.15
N1, 500 0.315 0.364 0.173 0.198 2.76 22.87
U10, 100 0.304 0.457 0.168 0.252 12.99 32.84
U10, 500 0.299 0.481 0.166 0.266 233 39.84
U020, 100 0.296 0.503 0.164 0.286 27.71 3291
U20, 500 0.291 0.538 0.161 0.311 63.83 42.58

Table 6: VQG-Bing Summary of metrics. These metric values are the maximum over the epochs.
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Figure 5: Examples of VQG-COCO with more questions, generated by our VQG algorithm. Darker colored boxes contain
questions which are more inferential.

Recognition based failures (blue box): Due to similar appearance a woman is recognized as a boy and in another image the
shadow on a wall is recognized as graffiti.

Co-occurrence based failure (pink box): Frequent occurrence of tablecloth based questions with food images generates a
similar question in this image, even without a tablecloth.

Natural language based failure (red box): Correct subjects like woman, phone and day are combined in an incorrect language
structure.

[What is the cat sitting in? ][/Are there any roses? ]
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Figure 6: Examples of VQG-Flickr with more questions, generated by our VQG algorithm. Darker colored boxes contain
questions which are more inferential.

Recognition based failures (blue box): An orange scooter is perceived as a red skateboard in one of the images.
Co-occurrence based failures (pink box): Frequent occurrence of spoon based questions with food images generates a similar
question in one of the images, which doesn’t even have a spoon. Similar is the case for candle questions in birthday images.
This cake doesn’t have a candle.

Natural language based failures (red box): Correct subject like bicycles is incorrectly framed in a question. Similar is the
case with word ‘occasion’ in the birthday image.
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Figure 7: Examples of VQG-Bing with more questions, generated by our VQG algorithm. Darker colored boxes contain

questions which are more inferential.

Recognition based failures (blue box): Image on the top left (which is difficult for even humans to recognize) is of a tor-
toise/turtle with its eggs. The image looks very similar to objects like grapes, vines, snakes. We observe a recognition based
failure for the image with a train station. The dark track and platform are recognized as road and sidewalk respectively.

Co-occurrence based failures (pink box): Frequent occurrence of bird based questions with tree images generates a similar
question in one of the images, which doesn’t even have a bird. Similarly, license plate question pops up in the car image.

This car view doesn’t have a license plate view.

Natural language based failures (red box): Correct subjects like trail and mountains are incorrectly framed in a question.



