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A. Detailed Experimental Setup
In this section, we describe the network architectures and

training procedures for each dataset. In the following tables,
FC. and conv. indicate fully connected and convolution, re-
spectively. The symbols ↓ and ↑ represent downsampling
and upsampling, respectively. To downscale and upscale,
we respectively used convolutions and backward convolu-
tions (i.e., fractionally strided convolutions) with stride 2.
The terms BNorm, ReLU, and LReLU indicate batch nor-
malization [1], rectified linear unit activation [5], and leaky
rectified linear unit activation [4, 8], respectively. To make
a discriminator D and an auxiliary network Q conditioned
on attribute y, we extended and reshaped y to fit the size
of the layer and concatenated it to the networks. This is
indicated as + cond. in the tables. We trained the models
using the Adam optimizer [2], with a minibatch of size 128.
We set the learning rate as 2e-4 for D/Q, 1e-3 for the gen-
erator network G, and 1e-3 for the classifier/encoder C/E.
The momentum term β1 was set to 0.5. The details for each
dataset are described below.

A.1. MNIST

The network architectures are shown in Table 1. The
D and Q share most parts of the network. For this task,
we used a 100-dimensional attribute-independent variable
zi. For attribute-dependent variable z′a, we used three
types: a ten-categorical RB, two-dimensional SB-I, and
two-dimensional SB-II. We compared them in the experi-
ments. In the pre-experiments, we found that the D tended
to overfit to the training data, so we added 0.001 weight
decay to the discriminator objective function.

A.2. CUB

The network architectures are shown in Table 2. The
D and Q share most parts of the network. For this task, we
used a 128-dimensional zi. For z′a, we used the combination
of a five-categorical RB and one-dimensional SB-I. In the
pre-experiments, we found that the D tended to overfit to

Generator G
Input: zi ∈ R100, z′a(= fy(za))
1024 FC., BNorm, ReLU
7 · 7 · 128 FC., BNorm, ReLU
4× 4 64 conv. ↑, BNorm, ReLU
4× 4 1 conv. ↑, sigmoid

Discriminator D / Auxiliary Network Q
Input: 28× 28 gray image + cond.
4× 4 64 conv. ↓, LReLU + cond.
4× 4 128 conv. ↓, BNorm, LReLU + cond.
1024 FC., BNorm, LReLU + cond.
FC. output for D
128 FC.-BNorm-LReLU-FC. output for Q

Table 1. Network architectures used for MNIST dataset

Generator G
Input: zi ∈ R128, z′a(= fy(za))
4 · 4 · 512 FC., BNorm, ReLU
4× 4 256 conv. ↑, BNorm, ReLU
4× 4 128 conv. ↑, BNorm, ReLU
4× 4 64 conv. ↑, BNorm, ReLU
4× 4 3 conv. ↑, tanh

Discriminator D / Auxiliary Network Q
Input: 64× 64 color image + cond.
4× 4 64 conv. ↓, LReLU + cond.
4× 4 128 conv. ↓, BNorm, LReLU + cond.
4× 4 256 conv. ↓, BNorm, LReLU + cond.
4× 4 512 conv. ↓, BNorm, LReLU + cond.
FC. output for D
128 FC.-BNorm-LReLU-FC. output for Q

Table 2. Network architectures used for CUB dataset

the training data, so we added 0.004 weight decay to the
discriminator objective function.



Generator G
Input: zi ∈ R128, z′a(= fy(za))
4 · 4 · 512 FC., BNorm, ReLU
4× 4 256 conv. ↑, BNorm, ReLU
4× 4 128 conv. ↑, BNorm, ReLU
4× 4 64 conv. ↑, BNorm, ReLU
4× 4 3 conv. ↑, tanh

Discriminator D / Auxiliary Network Q
Input: 64× 64 color image + cond.
4× 4 64 conv. ↓, LReLU + cond.
4× 4 128 conv. ↓, BNorm, LReLU + cond.
4× 4 256 conv. ↓, BNorm, LReLU + cond.
4× 4 512 conv. ↓, BNorm, LReLU + cond.
FC. output for D
128 FC.-BNorm-LReLU-FC. output for Q

Classifier C / Encoder E
Input: 64× 64 color image
4× 4 64 conv. ↓, LReLU
4× 4 128 conv. ↓, BNorm, LReLU
4× 4 256 conv. ↓, BNorm, LReLU
4× 4 512 conv. ↓, BNorm, LReLU
FC. output for C
FC. output for E

Table 3. Network architectures used for CelebA dataset

A.3. CelebA

The network architectures are shown in Table 3. The
D and Q share most parts of the network. The C and E
also share most parts of the network. For this task, we
used a 128-dimensional zi. For z′a, we used three types:
a ten-categorical RB, three-dimensional SB-I, and three-
dimensional SB-II. We compared them in the experiments.

B. Extended Results
In the main paper, we reported only the key results due

to space limitations. This section provides more results and
comparisons to clarify the characteristics of our CFGAN.

B.1. Attribute-based Image Generation

B.1.1 Control between Two Digits

As described in the main paper, we used the subsets of the
MNSIT dataset to clarify the basic characteristics of the CF-
GAN. We selected two types of digits and regarded one as
an attribute (y = 1) and the other as a non-attribute (y = 0).
In the main paper, we showed the results in which “4” and
“9” were regarded as the attribute and non-attribute, respec-
tively. We now give the other cases. Figure 3 shows the
results in which “1” and “7” were regarded as the attribute

and non-attribute, respectively, Figure 4 shows the results
in which “3” and “8” were regarded as the attribute and
non-attribute, respectively, and Figure 5 shows the results in
which “5” and “6” were regarded as the attribute and non-
attribute, respectively. For each case, we implemented three
controllers (a ten-categorical RB, two-dimensional SB-I,
and two-dimensional SB-II) and compared them.

These results indicate that the CFGAN could represent
large variations of an attribute regardless of the digits and
that the variations could be controlled categorically with the
RB and continuously with the SB-I or the SB-II. In particu-
lar, the SB-I enabled attributes to be controlled continuously
around the non-attribute state, and the SB-II enabled them
to be controlled continuously from non-attribute to attribute
states. In both the CGAN and CFGAN + RB, the identi-
ties (e.g., line width and rough shape) were retained. The
difference between them is that the CGAN changes digits
deterministically but the CFGAN enables a user to select
the best one using the controllers.

B.1.2 Red-Bird and Yellow-Bird Generators

In the main paper, we discussed “blue”-bird generation. We
now discuss the other colored bird generations. Figures 6
and 7 show “red”-bird and “yellow”-bird generations, re-
spectively. For “red”-bird generation, we selected the at-
tributes with “red” in the name (e.g., red wing, red tail, red
eye, red leg, and red crown) from 312 attributes, summa-
rized them all as “red” birds, and used them as the super-
vised data, i.e., regarded “red” as the attribute (y = 1) and
“not red” as the non-attribute (y = 0). We used the CF-
GAN with the combination of a five-categorical RB and
one-dimensional SB-I. For “yellow”-bird generation, we
conducted the experiments using a similar setting as that
of “red”-bird generation.

Similar to digit generation, the CFGAN enables a user to
control large variations of “red” birds and “yellow” birds.
For our experiments, in particular, we designed a controller
with a combination of the RB and SB-I, which enabled im-
ages to be controlled categorically and continuously at the
same time. The SB-I controller enables a user to control the
degree of color, and the RB controller enables a user to se-
lect the place to be colored. Note that, in training the mod-
els, we only use the binary value indicating the presence or
absence of an attribute (e.g., red or not) as the supervised
data, and do not use the degree of color or position of the
colored place as the supervised data.

B.1.3 Face-Attribute Generator

To clarify the difference in controllers for various attributes,
we implemented three controllers (a ten-categorical RB,
three-dimensional SB-I, and three-dimensional SB-II) for



six attributes (bangs, eyeglasses, heavy makeup, male, smil-
ing, and young). The results are shown in Figures 8-13.

In the GAN, it is difficult to control whether a gener-
ated image includes the attribute because its latent variables
are highly entangled. The CGAN can control the attribute
by switching the value of y, but it cannot control variations
of the attribute because y represents only the presence or
absence of the attribute. In contrast, the CFGAN enables
variations of the attribute to be controlled: the RB enables
them to be controlled categorically, the SB-I enables them
to be controlled continuously around the non-attribute state,
and SB-II enables them to be controlled continuously from
non-attribute to attribute state. Only the CFGAN + three-
dimensional SB-II for glasses did not work well. The reason
is considered that, in this case, it was difficult to define the
strength of the non-attribute state (i.e., the strength of non-
glasses state), so the continuous representation between the
attribute and non-attribute states did not fit well. This re-
sult indicates that it would be better to select the types of
controllers according to the attribute property.

B.1.4 Comparison of Different Categorical RBs

To evaluate the relationship between the number of cat-
egories and controllability of RB, we compared the RBs
in which the number of categories were different. Fig-
ure 14 shows example images generated using them. We
selected “glasses” as an attribute. When the number of cat-
egories was small (e.g., (a) and (b)), the different types of
glasses were represented in the same category. In contrast,
as the number of categories increased, the slightly different
glasses became separated. Generally speaking, there is a
trade-off between abstract and detailed description, and it is
difficult to determine the best one. Therefore, it is recom-
mended to select the number of categories depending on the
application.

B.1.5 Comparison of CFGAN and InfoCGAN

As discussed in Sec. 4.2 of the main paper, the fundamental
difference between the CFGAN and InfoCGAN is whether
the controllable variable (i.e., z′a in the CFGAN and zc in
the InfoCGAN) is conditioned on y.

To further clarify this difference, we conducted a quan-
titative analysis to measure how the generated variations
are specific to the attribute. We first generated two im-
ages x1 and x2 using the same zi, same y = 1, and ran-
domly sampled the controllable variable (i.e., z′a in the
CFGAN and zc in the InfoCGAN). We then cropped the
attribute-specific and unspecific areas, as shown in Fig-
ure 1, and calculated SSIM [7] between pair images for
each area. Finally, we calculated their ratio: V S(x1, x2) =
SSIM(x1attr, x

2
attr)/SSIM(x1other, x

2
other). A smaller score
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Figure 1. Definition of attribute-specific and unspecific areas

Glasses Bangs
InfoCGAN (RB) 1.14 1.07
InfoCGAN (SB) 1.04 0.95
CFGAN (RB) 0.65 0.48

CFGAN (SB-I) 0.52 0.43
CFGAN (SB-II) 0.92 0.82

Table 4. Variation specialization scores

(b) CFGAN + SB-I

(c) CFGAN + SB-II

(a) InfoCGAN + SB

Axis 1 Axis 2

Axis 1 Axis 2

Axis 1 Axis 2

y = 0 y = 1

Figure 2. Sample images generated using InfoCGAN and CF-
GANs. In (a), sample images were generated from same zi and
varying zc using InfoCGAN, while in (b)–(c), sample images were
generated from same zi and varying z′a using CFGANs.

indicates that variations are specific to the attribute. We cal-
culated the scores for 100,000 randomly generated pair im-
ages and took the average. We call this score the varia-
tion specialization (VS) score. For comparison, we imple-
mented five models (InfoCGAN with a ten-categorical RB,
InfoCGAN with a three-dimensional SB, CFGAN with a
ten-categorical RB, CFGAN with a three-dimensional SB-
I, and CFGAN with a three-dimensional SB-II) for two at-
tributes (glasses and bangs). Table 4 lists the results and
indicates that the variations in the CFGANs are more spe-
cific to the attribute than those in the InfoCGANs.

We also show the extended qualitative results in Fig-
ure 2. We regarded “4” as the attribute (y = 0) and “9”
as the non-attribute (y = 1). We implemented the follow-
ing three models: InfoCGAN with a two-dimensional SB,
CFGAN with a two-dimensional SB-I, and CFGAN with a
two-dimensional SB-II. In the InfoCGAN, zc was not con-
ditioned on y; therefore, attribute-independent features (i.e.,
features common between “4” and “9”) were obtained. For



example, in Figure 2 (a), “rotation” and “thickness” could
be controlled independently from the attribute. In the CF-
GAN, z′a was conditioned on y using the filtering architec-
ture; therefore, attribute-dependent features were obtained.
For example, in Figure 2 (b), the attribute state was con-
tinuously controlled around the non-attribute state, while in
Figure 2 (c), the non-attribute and attribute states were con-
tinuously controlled.

B.2. Attribute-based Image Editing

We applied the same face-attribute generator described
in Sec. B.1.3 to the image-editing task. For each attribute,
we selected one controller based on the results in Sec. B.1.3.
Figures 15-20 show the results. To achieve image editing,
we conducted the procedure described in Figure 5 of the
main paper, i.e., (1) load an input image, (2) reconstruct
with encoder neural network, (3) reconstruct with gradi-
ent descent, (4) modify latent variables, and (5) apply post-
processing.

As discussed in a previous study [3], it is challenging for
a deep generative model to modify attributes while retain-
ing the identity of an input image because the detailed tex-
ture could be lost in the reconstruction process. To allevi-
ate this problem, we developed a post-processing technique
and it works well as shown in Figures 15-20. Note that this
technique does not depend on the CFGAN; therefore, it can
be used for general generative models. Moreover, previous
deep generative models such as CVAE [9] and VAE/GAN
+ visual attribute vector [3] controlled each attribute one-
dimensionally, similar to the CGAN, but the CFGAN en-
abled an attribute to be controlled multi-dimensionally. This
enables a user to edit attributes of an image more expres-
sively.

B.3. Attribute Transfer

In this section, we provide the extended results of at-
tribute transfer. Figure 21 shows the results in which the at-
tributes (bangs) of ten people were transferred to ten other
people. We used the CFGAN with a three-dimensional SB-I
for this task. The column shows the sample images gener-
ated from the same z′a for the different zis. These results
indicate that hair style (e.g., left parted hair, bob cut hair)
can be transferred regardless of gender, age, and pose. The
row shows the sample images generated from the same zi
for the different z′as. These results indicate that identity is
retained regardless of transferred hair style.

In fact, previous studies [3, 6] have also attempted to
transfer attributes between individuals using deep gener-
ative models. However, they required multiple samples
that contain the same attribute because their latent variables
are not disentangled into attribute-dependent and attribute-
independent, and they need to average them to know the
“secret” of the attribute. In the CFGAN, however, the

Attributes Controller type
Bangs three-dimensional SB-I
Glasses ten-categorical RB
Makeup three-dimensional SB-I
Male three-dimensional SB-II
Smiling three-dimensional SB-II
Young three-dimensional SB-II

Table 5. Sets of attributes and controller types in CFGAN with
multiple attribute controllers, on which interface shown in Fig-
ure 23 was based.

attribute-dependent and attribute-independent variables are
disentangled in the latent space, so we can do “one-shot”
transfer by exchanging only z′as.

B.4. Attribute-based Image Retrieval

Figure 22 shows the extended results of attribute-based
image retrieval. We used the CFGAN with a three-
dimensional SB-I for this task. For comparison, we mea-
sured the distance in the low-level image space, i.e., x,
attribute-label space, i.e., y, attribute-independent latent
variable space, i.e., zi, and attribute-dependent latent vari-
able space, i.e., z′a. When images were retrieved on the ba-
sis of x or zi, images that were globally similar to the query
(e.g., background and pose) were retrieved. In contrast,
when images were retrieved on the basis of y or z′a, images
that had the same attribute as the query (i.e., “with glasses”
in this case) were retrieved. In particular, when images were
retrieved on the basis of y, the type of attribute (e.g., thin
glasses, sunglasses, thick glasses) was not consistent; how-
ever, when images were retrieved on the basis of z′a, the type
of attribute was similar to the query. These results indicate
that the learned latent variable, i.e., z′a has enough expres-
sive power to represent variations of “glasses”. Note that
we did not use the type of attribute as the supervised data;
rather, we only used binary value indicating the presence
or absence of an attribute as the supervised data. Based on
the results, we plan to use the CFGAN as a latent variation-
discovery tool for high-dimensional data.

C. Interface for GAC
We developed an interface for a GAC with the CFGAN

to show its effectiveness. We used the CFGAN with multi-
ple attribute controllers for this task. The sets of attributes
and controller types are listed in Table 5. We conducted the
experiment with a laptop PC. Once the latent variables were
estimated, we used only a feedforward neural network and
simple post-processing. This enabled us to edit an image in
real time. Figure 23 shows image-editing examples using
this interface.
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(a) CGAN (b) CFGAN + RB (c) CFGAN + SB-I (d) CFGAN + SB-II

Figure 3. Example results of control between 1 and 7. Digits in red boxes do not contain attributes (y = 0), while digits in blue boxes
contain attributes (y = 1). In (a) and (b), row shows sample images generated from same z and zi, respectively. In right figure of (b),
column contains five samples from same category in z′a. In (c) and (d), z′a changed continuously along two orthogonal axes.

(a) CGAN (b) CFGAN + RB (c) CFGAN + SB-I (d) CFGAN + SB-II

Figure 4. Example results of control between 3 and 8. View of figure is same as that in Figure 3.

(a) CGAN (b) CFGAN + RB (c) CFGAN + SB-I (d) CFGAN + SB-II

Figure 5. Example results of control between 5 and 6. View of figure is same as that in Figure 3.



Not red

Not red

Red

Red

Not red Red ? Not red Red

(a) Original (b) GAN (c) CGAN

(d) CFGAN

Not red

Red

Figure 6. Example results of red-bird generator. In (d), row shows samples from same category of RB while varying value of SB-I
continuously from left to right.



Not yellow

Yellow

Yellow

Yellow ? Yellow

(a) Original (b) GAN (c) CGAN

(d) CFGAN

Yellow

Not yellow

Not yellow

Not yellow Not yellow

Figure 7. Example results of yellow-bird generator. View of figure is same as that in Figure 6.



No bangs Bangs

No bangsBangs Bangs

Axis 1

Axis 2

Axis 3

No bangs Bangs

Axis 1

Axis 2

Axis 3

No bangs Bangs?No bangs Bangs

(a) Original (b) GAN (c) CGAN

(d-1) CFGAN + ten-categorical RB

(d-2) CFGAN + three-dimensional SB-I

(d-3) CFGAN + three-dimensional SB-II

Figure 8. Example results of bangs generation. In (c), row shows sample images from same z, and column shows images generated for
y = 0 or y = 1. In (d-1), row shows sample images from same zi, and column shows images generated for different z′a. In (d-2) and (d-3),
sample images are generated from same zi. Row shows sample images where value of SB-I was varied continuously from left to right for
each axis.



No glasses Glasses

No glassesGlasses Glasses

Axis 1

Axis 2

Axis 3

No glasses Glasses

Axis 1

Axis 2

Axis 3

No glasses Glasses?No glasses Glasses

(a) Original (b) GAN (c) CGAN

(d-1) CFGAN + ten-categorical RB

(d-2) CFGAN + three-dimensional SB-I

(d-3) CFGAN + three-dimensional SB-II

Figure 9. Example results of glasses generation. View of figure is same as that in Figure 8.



No makeup Makeup

No makeupMakeup Makeup

Axis 1

Axis 2

Axis 3

No makeup Makeup

Axis 1

Axis 2

Axis 3

No makeup Makeup?No makeup Makeup

(a) Original (b) GAN (c) CGAN

(d-1) CFGAN + ten-categorical RB

(d-2) CFGAN + three-dimensional SB-I

(d-3) CFGAN + three-dimensional SB-II

Figure 10. Example results of makeup generation. View of figure is same as that in Figure 8.



Female Male

FemaleMale Male

Axis 1

Axis 2

Axis 3

Female Male

Axis 1

Axis 2

Axis 3

Female Male?Female Male

(a) Original (b) GAN (c) CGAN

(d-1) CFGAN + ten-categorical RB

(d-2) CFGAN + three-dimensional SB-I

(d-3) CFGAN + three-dimensional SB-II

Figure 11. Example results of male generation. View of figure is same as that in Figure 8.



Not smiling Smiling

Not smilingSmiling Smiling

Axis 1

Axis 2

Axis 3

Not smiling Smiling

Axis 1

Axis 2

Axis 3

Not smiling Smiling?Not smiling Smiling

(a) Original (b) GAN (c) CGAN

(d-1) CFGAN + ten-categorical RB

(d-2) CFGAN + three-dimensional SB-I

(d-3) CFGAN + three-dimensional SB-II

Figure 12. Example results of smiling generation. View of figure is same as that in Figure 8.



Not young Young

Not youngYoung Young

Axis 1

Axis 2

Axis 3

Not young Young

Axis 1

Axis 2

Axis 3

Not young Young?Not young Young

(a) Original (b) GAN (c) CGAN

(d-1) CFGAN + ten-categorical RB

(d-2) CFGAN + three-dimensional SB-I

(d-3) CFGAN + three-dimensional SB-II

Figure 13. Example results of young generation. View of figure is same as that in Figure 8.



(a) CFGAN + no RB (= GAN)

(b) CFGAN + one-categorical RB (= CGAN)

(c) CFGAN + two-categorical RB

(d) CFGAN + four-categorical RB

(e) CFGAN + ten-categorical RB

(f) CFGAN + 20-categorical RB

(g) CFGAN + 40-categorical RB

Figure 14. Example results of glasses generation for different categorical RBs



Original

Original Bangs Bangs Bangs Bangs Bangs Bangs

Bangs

Original Original Original

(a) CGAN

(b) CFGAN + three-dimensional SB-I

Axis 1 Axis 2 Axis 3

Figure 15. Example results of bangs-based image editing. In (a), row shows sample images that contain same z but different y. In (b), row
shows sample images that contain same zi but different z′a.

Original

Original Glasses

Glasses

(a) CGAN

(b) CFGAN + ten-categorical RB

Figure 16. Example results of glasses-based image editing. View of figure is same as that in Figure 15.



Original

Original Makeup Makeup Makeup Makeup Makeup Makeup

Makeup

Original Original Original

(a) CGAN

(b) CFGAN + three-dimensional SB-I

Axis 1 Axis 2 Axis 3

Figure 17. Example results of makeup-based image editing. View of figure is same as that in Figure 15.

Original

Original Female Male Male Male

Male

Original Original Original

(a) CGAN

(b) CFGAN + three-dimensional SB-II

Axis 1 Axis 2 Axis 3

Female Female

Figure 18. Example results of male-based image editing. View of figure is same as that in Figure 15.



Original

Original Not smiling Smiling Smiling Smiling

Smiling

Original Original Original

(a) CGAN

(b) CFGAN + three-dimensional SB-II

Axis 1 Axis 2 Axis 3

Not smiling Not smiling

Figure 19. Example results of smiling-based image editing. View of figure is same as that in Figure 15.

Original

Original Not young Young Young Young

Young

Original Original Original

(a) CGAN

(b) CFGAN + three-dimensional SB-II

Axis 1 Axis 2 Axis 3

Not young Not young

Figure 20. Example results of young-based image editing. View of figure is same as that in Figure 15.
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Attribute: 

Identity: 

Figure 21. Example results of bangs-based attribute transfer. Images were generated from zi extracted from first-column images and z′a
extracted from first-row images.
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Figure 22. Top ten retrieval results of glasses-based image retrieval. First column shows query images. In other columns, images are
ordered from left to right on basis of distance in x, zi, y, and z′a.
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Bangs Controller

(SB-I)

Makeup Controller

(SB-I)

Female/Male Controller

(SB-II)

Not Smile/Smile Controller

(SB-II)

Old/Young Controller

(SB-II)

Glasses Controller

(RB)

Bangs Transfer

Add bangs Add makeup Make male Make smile

Make young Add glasses Transfer bangs Reset bangs

Reset makeup Reset male Reset smile Reset young

Figure 23. Image-editing examples using interface for GAC with CFGAN. Attributes of image can be edited using typical controllers (slide
bars, radio buttons, and reset buttons) while retaining identity.


