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1. Content

This supplementary material provides additional quant-
itative and qualitative results:

• Section 2 analyses the contribution of the post-
processing stages during recursive training (Figure
S1).

• Section 3 discusses training differences of our ap-
proach in contrast to the related work.

• We report a comparison of different GrabCut-like
methods on Pascal VOC12 boxes in Section 4.

• Section 5 (Figure S2) shows visualization of the differ-
ent variants of the proposed segmentation inputs ob-
tained from bounding box annotations for weakly su-
pervised semantic segmentation.

• Detailed performance of each class for semantic la-
belling is reported in Section 6 (Table S2).

• Section 7 provides additional qualitative results for
weakly supervised semantic segmentation on Pascal
VOC12 (Figure S3).

• Qualitative results for instance segmentation are
shown in Section 8 (Figure S4 and Figure S5).

2. Recursive training with boxes

In Section 3 of the main paper we recursively train a con-
vnet directly on the full extend of bounding box annotations
as foreground labels, disregarding post-processing stages.
We name this recursive training approach Naive. Us-
ing this supervision and directly applying recursive training
leads to significant degradation of the segmentation output
quality, see Figure S1.

To improve the labels between the training rounds three
post-processing stages are proposed. Here we discuss them
in more detail:

1. Box enforcing: Any pixel outside the box annotations
is reset to background label (cue C1, see Section 3 in
the main paper).

Box enf.+Outliers reset+CRF
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Figure S1: Recursive training from rectangles only as input.
Validation set results. All methods use only rectangles as
initial input, except “previous best (segments)“.

2. Outliers reset: If the area of a segment is too small
compared to its corresponding bounding box (e.g.
IoU< 50%), the box area is reset to its initial label
(fed in the first round). This enforces a minimal area
(cue C2).

3. CRF: As it is common practice among semantic la-
belling methods, we filter the output of the network
to better respect the image boundaries. (We use Den-
seCRF [5] with the DeepLabv1 parameters [2]). In
our weakly supervised scenario, boundary-aware fil-
tering is particularly useful to improve objects delin-
eation (cue C3).

Results Figure S1 presents results of the recursive train-
ing using boxes as input and shows the contribution of
the post-processing stages. We see that the naive recurs-
ive training is ineffectual. However as soon as some con-
straints (box enforcing and outliers reset, cues C1+C2) are
enforced, the quality improves dramatically after the first
round of recursive training. These results already improve
over previous work considering rectangles only input [4, 6]
(both using a similar convnet to ours) and achieve 3 points
improvement over [6] (from 52.5 to 55.6 mIoU, see Figure
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S1 “Box enf.+Outliers reset”).
Even more, when also adding CRF filtering (+ cue C3)

over the training set, we see a steady grow after each round,
stabilizing around 61% mIoU. This number is surprisingly
close to the best results obtained using more sophisticated
techniques [4], which achieve around 62% mIoU (see Fig-
ure S1 and Table S2).

Our results indicate that recursive training of a convnet
is robust to input noise as soon as appropriate care is taken
to de-noise the output between rounds, enabled by given
bounding boxes and object priors.

3. Training details in comparison with BoxSup
and WSSL

In this work we focus on box level annotations for se-
mantic labelling of objects. The closest related work are
thus [4, 6]. Since all implementations use slightly different
networks and training procedures, care should be taken dur-
ing comparison. Both [4] and [6] propose new ways to train
convnets under weak supervision. Both of the approaches
build upon the DeepLab network [2], however, there are a
few differences in the network architecture.

WSSL [6] employs 2 different variants of the DeepLab
architecture with small and large receptive field of view
(FOV) size. For each experiment WSSL evaluates with
both architectures and reports the best result obtained (us-
ing boxes or segments as input). BoxSup [4] uses their own
implementation of the DeepLab with the small FOV. In our
approach all the experiments employ the DeepLab architec-
ture with the large FOV.

There are also differences in the training procedure. For
SGD WSSL uses a mini-batch of 20-30 images and fine-
tunes the network for about 12 hours (number of epochs is
not specified) with the standard learning parameters (fol-
lowing [2]). In the SGD training BoxSup uses a mini-batch
size of 20 and the learning rate is divided by 10 after every
15 epochs. The training is terminated after 45 epochs. We
use a mini-batch of 30 images for SGD and the learning rate
is divided by 10 after every 2k iterations, ~6 epochs. Our
network is trained for 6k iterations, ~18 epochs.

Similarly to our approach, the BoxSup method [4] uses
MCG object proposals during training. However, there are
important differences. They modify the training procedure
so as to denoise intermediate outputs by randomly selecting
high overlap proposals. In comparison, our approach keeps
the training procedure unmodified and simply generates in-
put labels. Our approach also uses ignore regions, while
BoxSup does not explore this dimension.

WSSL [6] proposes an expectation-maximisation al-
gorithm with a bias to enable the network to estimate the
foreground regions. In contrast, in our work we show that
one can reach better results without modifying the training

procedure (compared to the fully supervised case) by in-
stead carefully generating input labels for training from the
bounding box annotations (Section 3.2 in the main paper).

4. GrabCut variants

As discussed in Section 3.2 in the main paper we pro-
pose to employ box-guided instance segmentation to in-
crease quality of the input data. Our goal is to have weak
annotations with maximal quality and minimal loss in re-
call. In Section 3.1 in the main paper we explored how far
could we get with just using boxes as foreground labels.
However, to obtain results of higher quality several rounds
of recursive training are needed. Starting from less noisier
object segments we would like to reach better performance
with just one training round.

For this purpose we explore different GrabCut-like [7]
techniques, the corresponding quantitative results are in
Table S1. For evaluation we use the mean IoU meas-
ure. Previous work evaluated using the 50 images from the
GrabCut dataset [7], or 1k images with one salient object
[3]. The evaluation of Table S1 compares multiple methods
over 3.4k object windows, where the objects are not salient,
have diverse sizes and occlusions level. This is a more chal-
lenging scenario than usually considered for GrabCut-like
methods.

Method mIoU

GrabCut
variants

DenseCut [3] 52.5
Bbox-Seg+CRF [6] 71.1

GrabCut [7] 72.9
KGrabCut [8] 73.5

GrabCut+ 75.2

Table S1: GrabCut variants, evaluated on Pascal VOC12
validation set. See Section 4 for details.

GrabCut [7] is the established technique to estimate
an object segment from its bounding box. To further im-
prove its quality we propose to use better pairwise terms.
We name this variant GrabCut+. Instead of the typical
RGB colour difference the pairwise terms in GrabCut+
are replaced by probability of boundary as generated by
HED [9]. The HED boundary detector is trained on the gen-
eric boundaries of BSDS500 [1]. Moving from GrabCut
to GrabCut+ brings a∼ 2 points improvement, see Table
S1.
We also experimented with other variants such as
DenseCut [3] and KGrabCut [8] but did not obtain sig-
nificant gains.

[6] proposed to perform foreground/background seg-
mentation by using DenseCRF and the 20% of the centre
area of the bounding box as foreground prior. This ap-



proach is denoted Bbox-Seg+CRF in Table S1 and under-
performs compared to GrabCut and GrabCut+.

5. Examples of input segmentations
Figure S2 presents examples of the considered weak an-

notations. This figure extends Figure 3 of the main paper.

6. Detailed test set results for semantic la-
belling

In Table S2, we present per class results on the Pascal
VOC12 test set for the methods reported in the main paper
in Table 2.

On average with our weakly supervised results we
achieve ∼ 95% quality of full supervision across all classes
when training with VOC12 only or VOC12+COCO.

7. Qualitative results for semantic labelling
Figure S3 presents qualitative results for semantic la-

belling on Pascal VOC12. The presented semantic la-
belling examples show that high quality segmentation can
be achieved using only detection bounding box annotations.
This figure extends Figure 5 of the main paper.

8. Qualitative results for instance segmenta-
tions

Figure S4 illustrates additional qualitative results for
instance segmentations given by the weakly supervised
DeepMask and DeepLabBOX models. This figure comple-
ments Figure 6 from the main paper.

Figure S5 shows examples of instance segmentation
given by different methods. Our proposed weakly super-
vised DeepMask model achieves competitive performance
with fully supervised results and provides higher quality
output in comparison with box-guided segmentation tech-
niques. The DeepLabBOX model also provides similar res-
ults, see Table 4 in the main paper.



Training

data

Super-

vision
Method mean plane bike bird boat bottle bus car cat chair cow table dog horse

motor

bike

per

son
plant sheep sofa train tv

VOC12

weak

Box 62.2 62.6 24.5 63.7 56.7 68.1 84.3 75.0 72.3 27.2 63.5 61.7 68.2 56.0 70.9 72.8 49.0 66.7 45.2 71.8 58.3

Boxi 63.5 67.7 25.5 67.3 58.0 62.8 83.1 75.1 78.0 25.5 64.7 60.8 74.0 62.9 74.6 73.3 50.0 68.5 43.5 71.6 56.7

M ∩ G+ 67.5 78.1 31.1 72.4 61.0 67.2 84.2 78.2 81.7 27.6 68.5 62.1 76.9 70.8 78.0 76.3 51.7 78.3 48.3 74.2 58.6

semi M ∩ G+ 66.9 75.8 32.3 75.9 60.1 65.7 82.9 75.0 79.5 29.5 68.5 60.6 76.2 68.6 76.9 75.2 53.2 76.6 49.5 73.8 58.6

full
WSSL [6] 70.3 83.5 36.6 82.5 62.3 66.5 85.4 78.5 83.7 30.4 72.9 60.4 78.5 75.5 82.1 79.7 58.2 82.0 48.8 73.7 63.3

DeepLabours [2] 70.5 85.3 38.3 79.4 61.4 68.9 86.4 82.1 83.6 30.3 74.5 53.8 78.0 77.0 83.7 81.8 55.6 79.8 45.9 79.3 63.4

VOC12

+

COCO

weak
Boxi 66.7 69.0 27.5 77.1 61.9 65.3 84.2 75.5 83.2 25.7 73.6 63.6 78.2 69.3 75.3 75.2 51.0 73.5 46.2 74.4 60.4

M ∩ G+ 69.9 82.5 33.4 82.5 59.5 65.8 85.3 75.6 86.4 29.3 77.1 60.8 80.7 79.0 80.5 77.6 55.9 78.4 48.6 75.2 61.5

semi
BoxSup [4] 71.0 86.4 35.5 79.7 65.2 65.2 84.3 78.5 83.7 30.5 76.2 62.6 79.3 76.1 82.1 81.3 57.0 78.2 55.0 72.5 68.1

M ∩ G+ 72.8 87.6 37.7 86.7 65.5 67.3 86.8 81.1 88.3 30.7 77.3 61.6 82.7 79.4 84.1 82.0 60.3 84.0 49.4 77.8 64.7

full
WSSL [6] 72.7 89.1 38.3 88.1 63.3 69.7 87.1 83.1 85.0 29.3 76.5 56.5 79.8 77.9 85.8 82.4 57.4 84.3 54.9 80.5 64.1

DeepLabours [2] 73.2 88.8 37.3 83.8 66.5 70.1 89.0 81.4 87.3 30.2 78.8 61.6 82.4 82.3 84.4 82.2 59.1 85.0 50.8 79.7 63.8

Table S2: Per class semantic labelling results for methods trained using Pascal VOC12 and COCO. Test set results. Bold indicates the best performance with the
same supervision and training data. M ∩ G+ denotes the weakly or semi supervised model trained with MCG ∩ Grabcut+.
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Figure S2: Different segmentations obtained starting from a bounding box. White is background and ignore regions are
beige. M ∩ G+ denotes MCG ∩ Grabcut+.
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Figure S3: Qualitative results on VOC12. M ∩ G+ denotes the weakly supervised model trained on MCG ∩ Grabcut+.



DeepMask

DeepLabBOX

Figure S4: Example results from the DeepMask and DeepLabBOX models trained with Pascal VOC12 and COCO using box
supervision. White boxes illustrate Fast-RCNN detection proposals used to output the segments which have the best overlap
with the ground truth segmentation mask.
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Figure S5: Qualitative results of instance segmentation on VOC12. Example result from the DeepMask model are trained
with Pascal VOC12 and COCO supervision. White boxes illustrate Fast-RCNN detection proposals used to output the
segments which have the best overlap with the ground truth segmentation mask.
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