
A. Supplementary Material of “Efficient Multiple Instance Metric Learning using Weakly Super-
vised Data”

A.1. About the reference vectors

A.1.1 Closed-form solution of the reference vectors Z

As mentioned in [34, Example 2], the problem:

min
C
‖A−BCD‖2 (17)

can be solved in closed-form: C = B†AD†.
In Eq. (4), we can write A = diag(H1)XL, B = H and D = L. The matrix Z = H† diag(H1)XLL† is then optimal

for Eq. (4).
We recall that H ∈ QV . We prove in the following that: ∀H ∈ QV , H† diag(H1) = H†.

Proof. For anyH ∈ QV satisfyingH1 6= 1, there exists a permutation matrix Pπ such that PπH =

[
H̃
0

]
and diag(PπH1) =

diag

([
1
0

])
. Therefore,

H† diag(H1) =

(
P>π

[
H̃
0

])†
diag(H1) =

([
H̃
0

])†
Pπ diag(H1) =

[
H̃† 0

]
diag(PπH1)Pπ

=
[
H̃† 0

]
diag

([
1
0

])
Pπ =

[
H̃† 0

]
Pπ = H†.

On the other hand, if H1 = 1, diag(H1) is the identity matrix and we then also have H† diag(H1) = H†.

It is then clear that ∀H ∈ QV , Z = H† diag(H1)XLL† = H†XLL† is optimal for Eq. (4).

A.1.2 Mean vector of assigned instances

We explain why ZL = H†XLL†L = H†XL is the set of k mean vectors (i.e., centroids) of the instances in X assigned to
the k respective clusters and mapped by L.

By definition, XL is the set of instances in X mapped by L. We note hc the c-th column of H ∈ QV , ∀c ∈ {1, · · · , k},
we can write the c-th row of H† = (H>H)†H> as 1

max{1,h>c 1}h
>
c where h>c 1 = ‖hc‖2 is the number of instances assigned

to cluster c. The c-th row of ZL which corresponds to z>c L can then be written z>c L = 1
max{1,h>c 1}h

>
c XL. As hc ∈ {0, 1}n,

h>c XL selects and sums the instances assigned to the c-th cluster and mapped by L, z>c L = 1
max{1,h>c 1}h

>
c XL then

computes their mean vector (i.e., centroid).
Note that if for some c, hc = 0, then (z>c L)> = 0 is the closest centroid (of a candidate category) to none of the assigned

instances as it would otherwise lead to hc 6= 0 in order to minimize Eq. (4) (ignoring ties).

A.1.3 Equivalence between Eq. (5) and Eq. (6)

Once the closed-form expression of Z is plugged into Eq. (4), the problem can be written as:

min
H∈QV

‖ diag(H1)XL−HH†XL‖2 (18)

= min
H∈QV

tr(diag(H1)XLL>X> diag(H1))− 2 tr(diag(H1)XLL>X>HH†) + tr(HH†XLL>X>HH†) (19)

= min
H∈QV

tr(XLL>X> diag(H1) diag(H1))− 2 tr(XLL>X>HH† diag(H1)) + tr(XLL>X>HH†HH†) (20)

= min
H∈QV

tr(XLL>X> diag(H1))− 2 tr(XLL>X>HH†) + tr(XLL>X>HH†) (21)

⇔ max
H∈QV

tr([I − diag(H1) +HH†]XLL>X>) (22)

= max
A∈PV

〈A,XMX>〉. (23)

All the matrices in PV are orthogonal projection matrices:
The proof in Section A.1.1 implies that, for any H ∈ QV , [diag(H1)−HH†] is an orthogonal projection matrix because:
• it is symmetric (as it is a difference of symmetric matrices).
• it is idempotent by using the proof in Section A.1.1: [diag(H1) −HH†]2 = diag(H1) + HH† −HH† diag(H1) −

diag(H1)HH† = diag(H1) + HH† − HH† − HH† = diag(H1) − HH†. Indeed, diag(H1)HH† =
((HH†)> diag(H1)>)> = (HH† diag(H1))> = (HH†)> = HH†.

And for all orthogonal projection matrix that is written P = V DV > where D is a diagonal matrix whose elements are
either 0 or 1 and V is an orthogonal matrix, I − P = V (I −D)V > is also an orthogonal projection matrix (as (I −D) is a
diagonal matrix whose elements are either 0 or 1).

A.2. Large margin formulation of

Eq. (9) is equivalent to the following large margin problem:

min
M∈Sd+

max
C∈fM,PV (X)

max
Ĉ∈fM,PG (X)

∆(C, Ĉ) (24)

where ∆(C, Ĉ) = n− 〈C, Ĉ〉 ≥ 0 measures the discrepancy between the two predictions C and Ĉ.

A.3. Proof of Theorem 2.1

We recall that problem (10) is written:

max
M∈Sd+

min
C∈fM,PV (X)

min
Ĉ∈gM (X)

〈C, Ĉ〉 (25)

Upper bound of Eq. (10): Eq. (10) is naturally upper bounded by

max
M∈Sd+

max
C∈fM,PV (X)

min
Ĉ∈gM (X)

〈C, Ĉ〉 (26)

By using the definition fM,PV (X) in Eq. (7), we have fM,PV (X) ⊆ PV , Eq. (26) is then upper bounded by:

max
M∈Sd+

max
C∈PV

min
Ĉ∈gM (X)

〈C, Ĉ〉 = max
C∈PV

max
M∈Sd+

min
Ĉ∈gM (X)

〈C, Ĉ〉 (27)

Let us note U ∈ Rn×s a matrix defined as UU> = XX† and s = rank(X). By using the definition of gM (X), the column
space of Ĉ is included in the column space ofX and Ĉ is a rank-e orthogonal projection matrix where e = rank(XMX>) ≤
rank(X) = s. Ĉ can then be written: Ĉ = UQQ>U> where Q ∈ Rs×e and U ∈ Rn×s are matrices with orthonormal
columns.

Eq. (27) is then upper bounded by:

max
C∈PV

〈C,UQQ>U>〉 = max
C∈PV

〈U>CU,QQ>〉 ≤ max
C∈PV

tr(U>CU) (28)

Indeed, as Q ∈ Rs×e is a matrix with orthonormal columns, 〈U>CU,QQ>〉 is upper bounded by the sum of the e largest
eigenvalues of U>CU [21], which is itself upper bounded by tr(U>CU) (as it is the sum of all the eigenvalues of U>CU
and all the eigenvalues are nonnegative since U>CU is symmetric PSD).

Optimal value of Eq. (10): Let us now assume that M = X†(X†)>. In this case, we have the following properties:

fM,PV (X) = arg max
A∈PV

〈A,XMX>〉 = arg max
A∈PV

〈A,XX†(X†)>X>〉 = arg max
A∈PV

〈A,XX†〉 = arg max
A∈PV

〈A,UU>〉 (29)

gM (X) = {B : B ∈ fM,N (X), rank(B) ≤ rank(XX†(X†)>X>)} = {UU>} (30)

The objective value when M = X†(X†)> is then:

min
C∈fM,PV (X)

min
Ĉ∈gM (X)

〈C, Ĉ〉 = min
C∈arg maxA∈PV 〈A,UU>〉

〈C,UU>〉 = max
C∈PV

tr(U>CU) = max
A∈PV

〈A,XX†〉 (31)

The upper bound in Eq. (28) is then obtained, which proves the optimality of the problem for this value. Eq. (11) thus finds
an optimal value of C in Eq. (31) (i.e. a matrix C that reaches the global optimum value of Eq. (10)).

A.4. MIL kmeans extension

A.4.1 Why do we optimize Eq. (12)?

We define U ∈ Rn×s as a matrix with orthonormal columns such that s = rank(X) and XX† = UU>. U is constructed
with the “economy size” singular value decomposition ofX and corresponds to the matrix containing the left-singular vectors
of the nonzero singular values of X .

By using the results in Section A.1, the problem in Eq. (11) is equivalent to the following problems:

max
A∈PV

〈A,XX†〉 = max
A∈PV

tr(AXX†) = max
A∈PV

tr(AUU>) = max
H∈QV

tr([I +HH† − diag(H1)]UU>) (32)

⇔ min
H∈QV

tr([diag(H1)−HH†]UU>) = min
H∈QV

tr([diag(H1)−HH†]UU>[diag(H1)−HH†]>) (33)

= min
H∈QV

‖[diag(H1)−HH†]U‖2 (34)

= min
H∈QV

‖diag(H1)U −HH†U‖2 (35)

= min
H∈QV ,Z∈Rk×s

‖diag(H1)U −HZ‖2 (36)

= min
H∈QV ,Z=[z1,··· ,zk]>∈Rk×s

n∑
j=1

k∑
c=1

Hjc · ‖uj − zc‖2 where u>j is the j-th row of U (37)

We then solve Eq. (12) by alternating the optimization over Z and H in Algorithm 1.

A.4.2 Convergence of Algorithm 1

We now prove the convergence of Algorithm 1.
We note H(t) and Z(t) the values at iteration t of H ∈ QV and Z ∈ Rk×s, respectively.
• We first prove that, with Algorithm 1, the sequence of objective values in Eq. (36) (which is equal to Eq. (12)) is

monotonically nonincreasing. To this end, we show that:

∀t, ‖ diag(H(t)1)U −H(t)Z(t)‖2
(a)

≥ ‖ diag(H(t)1)U −H(t)Z(t+1)‖2
(b)

≥ ‖ diag(H(t+1)1)U −H(t+1)Z(t+1)‖2 (38)

- Inequality (a) comes from the fact that Z(t+1) = (H(t))† diag(H(t)1)U = (H(t))†U is a global minimizer of
min
Z
‖diag(H(t)1)U −H(t)Z‖2 as demonstrated in Section A.1.1.

- Inequality (b) comes from the fact that we can decompose the global problem as the sum of m independent subproblems
(when the value of Z is fixed):

min
H∈QV

‖ diag(H1)U −HZ(t+1)‖2 =

m∑
i=1

min
Hi∈Vi

‖ diag(Hi1)Ui −HiZ
(t+1)‖2 (39)

As mentioned in the paper, each subproblem in Eq. (13) is solved exactly with the Hungarian algorithm. The matrix H(t+1)

is the concatenation into a single matrix of all the global optimum solutions of the different independent subproblems. It is
then a global optimum solution of Eq. (39).
• Our clustering algorithm terminates in a finite number of steps at a partition that is locally optimal (i.e., the total

objective value cannot be decreased by either (a) or (b)). This result follows since the sequence of objective values in Eq.
(36) is monotonically nonincreasing with Algorithm 1, and the number of distinct clusterings (i.e. the cardinality of PV , or
equivalently the cardinality of QV) is finite.

A.5. Complexity of Algorithm 1

In the linear case, the complexity of steps 1 and 11 of Algo 1 is dominated by the (economy size) SVDs to compute U
and X† which cost O(ndmin{d, n}) where d is the dimensionality and n is the number of instances. The adapted kmeans
costs O(r

∑m
i=1(spiqi + p2

i qi)) where r is the number of iterations (steps 3 to 8 of Algo 1). Since, in practice, we have
∀i, pi = min{ni,y>i 1} ≤ qi = max{ni,y>i 1} � n, the complexity of Algo 1 is dominated by steps 1 and 11 which scale

linearly in n as we have n > d. In the nonlinear case, computing K†J ∈ Rn×k costs O(n3); it is efficiently done with a
Cholesky solver if K is symmetric positive definite.

In the linear case, the complexity of step 11 of Algorithm 1 does not depend on k and is dominated by the computation
of X† which costs O(ndmin{d, n}); this is due to the sparsity of H . Indeed, each row of H ∈ {0, 1}n×k contains at
most one nonzero element. H then contains at most n nonnzero elements. As explained in Footnote 1, the complexity of
computing J such that JJ> = HH† scales linearly in n and J has the same number of nonzero elements as H (i.e. at most
one per row). Let us note νc the number of nonzero elements in the c-th column of J . Once X† ∈ Rd×n has been computed
(i.e. the value of X† is known and fixed), computing the c-th row of X†J costs O(dνc). Computing L = X†J then costs
O(
∑k
c=1 dνc) = O(d

∑k
c=1 νc). As

∑k
c=1 νc ≤ n, computing X†J costs O(dn). We actually do not need to compute

M = LL>, computing L is sufficient and then costs O(ndmin{d, n}) as explained in this section.

A.6. Classification of instances in the nonlinear case

In this section, we extend the classification of test instances in the nonlinear case. To simplify the equations, we assume
that the nonlinear kernel function is chosen so that K is invertible (i.e., K† = K−1).

(·)nj=1 denotes concatenation in a n-dimensional vector.

A.6.1 Solving Eq. (15)

The squared distance of a (test) instance φ(xt) to a centroid φ(zc) = 1
max{1,h>c 1}Φhc where hc ∈ {0, 1}n is the c-th column

of H is:

‖PΦ>φ(xt)− PΦ>φ(zc)‖2

=((k(xj , xt))
n
j=1)>P>P (k(xj , xt))

n
j=1 + ((k(xj , zc))

n
j=1)>P>P (k(xj , zc))

n
j=1 − 2((k(xj , zc))

n
j=1)>P>P (k(xj ,xt))

n
j=1

We recall that P = J>K−1 and J is defined as explained in Footnote 1, Eq. (15) is then equivalent in the nonlinear case to:

arg max
c∈{1,··· ,k}

((k(xj , zc))
n
j=1)>P>P (k(xj ,xt))

n
j=1 −

1

2
((k(xj , zc))

n
j=1)>P>P (k(xj , zc))

n
j=1 (40)

The second (rescaled) term of Eq. (40) can be written:

((k(xj , zc))
n
j=1)>P>P (k(xj , zc))

n
j=1 =

1

max{1,h>c 1}
h>c Φ>ΦK−1JJ>K−1Φ>Φ(

1

max{1,h>c 1}
hc) (41)

=
1

(max{1,h>c 1})2
h>c KK

−1JJ>K−1Khc (42)

=
1

(max{1,h>c 1})2
h>c JJ

>hc =
1

(max{1,h>c 1})2
h>c HH

†hc (43)

=
1

(max{1,h>c 1})2
h>c hc (44)

We also note that ‖hc‖2 = h>c hc = h>c 1 =
∑
j Hjc is the number of instances assigned to category c. Eq. (44) is then

equal to the inverse of the number of elements assigned to category c (i.e. the inverse of the size of cluster c) if hc 6= 0, and
0 otherwise.

The first term of Eq. (40) can be written:

((k(xj , zc))
n
j=1)>P>P (k(xj ,xt))

n
j=1 =

1

max{1,h>c 1}
h>c Φ>ΦK−1JJ>K−1(k(xj ,xt))

n
j=1 (45)

=
1

max{1,h>c 1}
h>c KK

−1JJ>K−1(k(xj ,xt))
n
j=1 (46)

=
1

max{1,h>c 1}
h>c HH

†K−1(k(xj ,xt))
n
j=1 (47)

=
1

max{1,h>c 1}
h>c K

−1(k(xj ,xt))
n
j=1 (48)

Number of instances in a bag 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bags 12562 5109 1675 480 146 61 17 8 6 0 1 3 1 1 1

Table 5. Distribution of the number of instances per bag: 12562 bags contain one instance, 5109 bags contain 2 instances etc.

Number of training categories in bags 0 1 2 3 4 5 6 7 8 9

Scenario (b) 1384 16196 2295 181 8 3 1 2 0 1
Scenario (c) 0 12225 6247 1325 216 46 8 3 0 1

Table 6. Distribution of the number of training categories (i.e., among the k = 5873) labeled as present in the bags depending on the
scenarios. 1384 bags contain 0 training category in scenario (b) as instances correspond to other persons or are not face instances. etc.

Scenario Evaluation M-C2B [29] miSVM [1] MILES [4] MILBoost [36] EM-DD [37] Minimax MI-Kernel [10] MinD (minmin) [5] MinD (maxmin) MinD (meanmin)
Accuracy (%) 6.6 ± 2.2 4.5 ± 2.7 8.2 ± 2.3 8.8 ± 2.4 1.3 ± 0.5 5.5 ± 1.7 6.8 ± 2.5 3.2 ± 1.5 5.1 ± 1.9

(b) Precision (%) 7.2 ± 2.5 2.3 ± 1.5 9.2 ± 2.7 9.7 ± 2.7 1.8 ± 0.8 6.2 ± 2.5 7.1 ± 2.4 3.1 ± 1.4 5.5 ± 1.8
Train. Time (s) 2, 572 610 240 182 13, 163 358 276 259 265
Accuracy (%) 4.5 ± 1.8 3.6 ± 1.2 6.7 ± 2.0 6.9 ± 2.3 0.8 ± 0.2 4.8 ± 1.0 5.5 ± 1.3 1.8 ± 1.0 3.6 ± 1.2

(c) Precision (%) 5.3 ± 1.9 1.5 ± 0.8 7.0 ± 1.2 7.6 ± 1.8 1.1 ± 0.3 4.6 ± 1.3 5.3 ± 1.3 1.5 ± 0.7 3.4 ± 0.8
Train. Time (s) 2, 762 653 265 205 13, 484 391 296 281 291

Table 7. Performance of the different baselines on the Labeled Yahoo! News dataset.

A.6.2 Solving Eq. (16)

Following Section A.6.1, Eq. (16) can be adapted in the following way:

arg max
c∈{1,··· ,k}

1√
max{1,h>c 1}

h>c K
−1(k(xj ,xt))

n
j=1 −

α

(max{1,h>c 1})2
h>c hc (49)

⇔ arg max
c∈{1,··· ,k}

j>c K
−1(k(xj ,xt))

n
j=1 −

α

(max{1,h>c 1})2
h>c hc (50)

where jc = 1√
max{1,h>c 1}

hc is the c-th column of J as explained in Footnote 1.

A.7. Statistics of Labeled Yahoo News! dataset

We give some statistics of the Labeled Yahoo News! dataset in Tables 5 and 6.

A.8. Scores of biclass MIL classifiers

Baselines results are reported in Table 7. As M-C2B [29] uses an iterative algorithm and the complexity of each of its
iterations is cubic in d, we had to reduce the dimensionality to d = 1000 via PCA to make it scalable.

As explained in Section 3, M-C2B [29] is not appropriate for the face recognition task as it considers that all the instances
in bags that contain a given category are relevant to the category. In the case of face verification, at most one instance per bag
is relevant to a given category.

A.9. Interpretation of the results of MIMLCA on Labeled Yahoo! News

On test categories (i.e., the ∼ 50 selected categories per split), our model actually finds the correct instance assignments
of training instances with an error of 8.6% in scenario (b) and 16.2% in scenario (c); the larger the number of instances in the
categories, the smaller the detection error.

A.10. Our reimplementation of [12]

We contacted in April 2016 the authors of [12] and asked for their code. They replied that their code was not available.
Here is our reimplementation of their method:

1 function [A, Z, Obj] = MIML_metric(X, Y, N, r, params)
2 % X : [N_1, N_2, ...] in Rˆ{d x t}
3 % Y : bool valued in {0,1}ˆ{n x m}

4 % d: feature dimension
5 % n : number of bags
6 % m : number of labels
7 % t : total number of instances
8 % N : n x 1, N(ii) is the number of instances in bag ii
9 % for equal sized bags, N can be 1 x 1

10 % r : reduced dimension of the metric
11 % params : parameters, structure
12 % params.iter, max outer iteration
13 % params.inner, max inner iteration
14 % params.TOL, tolerance
15 %
16 % A : AA' is the distance metric, A orthogonal
17 % in Rˆ{d x r}
18 % Z : centroids, in Rˆ{d x m}
19 % each class has only one centroid (as in the experiments of Rong Jin et al.)
20

21 [d, t] = size(X);
22 [n, m] = size(Y);
23

24 % convenience for equal size of bags
25 if length(N) == 1, N = repmat(N, n, 1); end
26 if nargin < 4
27 error('not enough inputs');
28 elseif nargin == 4
29 params = [];
30 end
31 if isempty(params)
32 params.iter = 50;
33 params.inner = 20;
34 params.TOL = 1e-4;
35 end
36 max_iter = params.iter;
37 max_inner = params.inner;
38 TOL = params.TOL;
39

40 % initialize Mahalanobis metric
41 [A, ¬] = qr(randn(d, r), 0);
42 % initialize the centers;
43 % each class has one center (as in the experiments of Rong Jin et al.)
44 Z = randn(d, m);
45 % initialize Q
46 Q = zeros(n, m);
47 Obj = zeros(max_iter, 1);
48 for iter = 1:max_iter
49

50 % Optimizing Q with A and Z fixed
51 Xhat = A' * X;
52 Zhat = A' * Z;
53 Sim = Xhat' * Zhat;
54 LenX = sum(Xhat.ˆ2, 1)'; % COL
55 LenZ = sum(Zhat.ˆ2, 1); % ROW
56 % (squared) distance between X and Z: t x m
57 Dist = repmat(LenX,1,m) - 2*Sim + repmat(LenZ,t,1);
58

59 % find Q bag by bag
60 cum = 0;
61 for ii = 1:n
62 [¬, Q(ii,:)] = min(Dist(cum+1:cum+N(ii), :), [], 1);
63 % fix the index
64 Q(ii, :) = Q(ii, :) + cum;
65 cum = cum + N(ii);
66 end
67

68 % Optimizing A with Q and Z fixed
69 % forming U by replication
70 Xsel = X(:, Q(:)); % [n n ... n]

71 Zrep = repelem(Z, 1, n); % [n n ... n]
72 U = (Xsel - Zrep) * diag(Y(:)) * (Xsel - Zrep)';
73 % forming V by Laplacian
74 V = 2 * Z * (m*eye(m) - ones(m)) * Z';
75 % generalized eigen-decomposition
76

77 %% debug
78 % Diff = A'*Xsel - repelem(A'*Z, 1, n);
79 % obj = sum(Diff.ˆ2, 1) * Y(:);
80 %%
81 sigma = 0;
82 for ii = 1:max_inner
83 D = V - sigma*U;
84 D = (D+D') / 2;
85 [A, ¬] = eigs(D, r, 'LA');
86 sigma_new = trace(A'*V*A) / (trace(A'*U*A)+eps);
87 if abs(sigma_new - sigma) ≤ sigma*TOL
88 break;
89 end
90 sigma = sigma_new;
91 %% debug
92 % Diff = A'*Xsel - repelem(A'*Z, 1, n);
93 % obj = sum(Diff.ˆ2, 1) * Y(:);
94 %%
95 end
96

97

98 % Optimizing Z with Q and A fixed
99 Xhat = A' * Xsel;

100 Zhat = A' * Z;
101

102 % maintain some invariants
103 sumZ = sum(Zhat, 2);
104 InnerProd = Zhat' * Zhat;
105 sqNormZ = trace(InnerProd);
106 simZ = sum(InnerProd(:));
107

108 tmp = Xhat .* repmat(Y(:)', r, 1);
109 tmp = reshape(tmp, r, n, m);
110 % not to confuse with V
111 VV = squeeze(sum(tmp, 2));
112

113 %% h is not needed
114 % sqNormX = sum(Xhat.ˆ2, 1);
115 % sqNormX = repmat(sqNormX, n, m);
116 % h = sum(sqNormX.*Y, 1);
117

118 % not to confuse with A
119 AA = sum(Y, 1);
120

121 % not to confuse with t, total number of instances
122 tfix = trace(Zhat * ((m+1)*eye(m) - ones(m)) * Zhat') / 2;
123

124 Diff = Xhat - repelem(Zhat, 1, n);
125 obj = sum(Diff.ˆ2, 1) * Y(:);
126 for ii = 1:max_inner
127 for jj = 1:m
128 z = Zhat(:, jj);
129 u = (sumZ - z) / (m-1);
130 s = (tfix - m*sqNormZ + (m+1)*(z'*z) + simZ - 2*z'*sumZ) / (m-1);
131 a = AA(jj);
132 v = VV(:, jj);
133

134 den = s + norm(u)ˆ2;
135 if den > 0
136 lambda = a - min(a, norm(v-a*u)/sqrt(den));
137 else

138 lambda = 0;
139 end
140 znew = (v-lambda*u) / (a-lambda);
141

142 Zhat(:, jj) = znew;
143

144 % update the invariants
145 simZ = simZ - 2*z'*sumZ;
146 sumZ = sumZ - z + znew;
147 sqNormZ = sqNormZ - z'*z + znew'*znew;
148 simZ = simZ + 2*znew'*sumZ;
149 end
150

151 Diff = Xhat - repelem(Zhat, 1, n);
152 obj_new = sum(Diff.ˆ2, 1) * Y(:);
153 if abs(obj - obj_new) ≤ TOL*obj_new
154 break; % converged
155 end
156 obj = obj_new;
157 end
158

159 fprintf('iter = %d, obj = %f \n', iter, obj);
160 if iter > 1 && abs(Obj(iter-1) - obj) ≤ TOL*obj
161 break; % converged
162 end
163

164 Obj(iter) = obj;
165

166 % recover Z in full dimension
167 Z = A * Zhat;
168 end
169 Obj = Obj(1:iter);

A.11. Reimplementation of [29]

The reimplementation of [29, Algorithm 1] is straightforward. We use the same variable names as in the original paper:

1 function [L, tElapsed] = robust_mil(U,A,B, max_nbiterations, epsilon)
2 best_obj = inf;
3 obj = inf;
4 tStart = tic;
5 for iter=1:max_nbiterations
6 % step 2: construct lambda
7 lambda = sum(sqrt(sum((A * U).ˆ2,2))) / sum(sqrt(sum((B * U).ˆ2,2)));
8 % step 3: construct D
9 D = diag(1 ./ (2 * sqrt(sum((A * U).ˆ2,2))));

10 % step 4: construct S
11 bU = (B * U)';
12 norm_bU = sqrt(sum(bU.ˆ2,1));
13 S = (bsxfun(@rdivide,bU,norm_bU))';
14 % we use pinv instead of the operator \ because 2*(A'*D*A) is sometimes ill-conditioned
15 U = lambda * pinv(2 * (A' * D * A)) * (B' * S);
16 old_obj = obj;
17 obj = trace(U'*A'*D*A*U) - lambda * trace(U'*B'*S);
18 if obj ≤ best_obj
19 best_obj = obj;
20 best_U = U;
21 end
22 if abs(old_obj - obj) < epsilon
23 break;
24 end
25 end
26 tElapsed = toc(tStart)
27 L = best_U;
28 end

