
Supplementary Material for “Non-local Color Image Denoising with
Convolutional Neural Networks”

1. Derivative calculations
We note that for all derivative calculations we use the denominator layout notation1. Further, we recall from the main

paper that given Q pairs of training data
{
y(q),x(q)

}Q
q=1

, we learn the parameters Θ = {γt,πt,Ft,Wt}St=1 of the network,
which consists of S stages, using two different strategies, namely greedy and joint training. In the greedy training we learn
the parameters of each stage of the network independently from the parameters of the other stages. This is achieved by
minimizing the loss function

L
(
Θt
)
=

Q∑
q=1

`
(
x̂t(q),x(q)

)
, (1)

where x̂t(q) is the output of the t-th stage of the network. As we already mentioned in the main paper, we use this strategy
only to obtain a good initialization for the network parameters. Then, the complete set of the network parameters is jointly
learned by minimizing the loss function

L (Θ) =

Q∑
q=1

`
(
x̂S(q),x(q)

)
, (2)

where x̂S(q) is the final output of the network.

1.1. Single-Stage Parameter Learning

First we will consider the greedy training scheme. The results computed here will also be useful in the joint estimation
scheme. Since the gradient of the overall loss L in Eq. (1) is decomposed as:

∂L (Θt)

∂Θt
=

Q∑
q=1

∂`
(
x̂t(q),x(q)

)
∂Θt

, (3)

hereafter we will consider the case of a single training example x̂t. In order to retain the notation simplicity, in the following
computations we will also drop the superscript t from all the variables and use it only when it is necessary.

As we mentioned in the main paper, to compute the gradients w.r.t the network parameters we rely on the chain rule and
we get

∂` (x̂,x)

∂Θ
=

∂x̂

∂Θ
· ∂` (x̂,x)

∂x̂
, (4)

where

∂` (x̂,x)

∂x̂
=

20

log 10

(x̂− x)

‖x̂− x‖22
, (5)

1For the details of this notation we refer to https://en.wikipedia.org/wiki/Matrix_calculus#Denominator-layout_notation.

1

https://en.wikipedia.org/wiki/Matrix_calculus#Denominator-layout_notation

is a vector of size N × 1. Now we focus on the computation of the Jacobian of the output of the stage, x̂, w.r.t the stage
parameters. To do so, we first recall that the output, x̂, of a stage given an input z, is computed according to the mapping

x̂ = PC

(
z (1− γ) + γy −

R∑
r=1

LT
rψ (Lrz)

)
. (6)

The Jacobian of x̂ w.r.t the parameters of the stage, Θ, can now be expressed as

∂x̂

∂Θ
=
∂u

∂Θ

∂PC (u)

∂u
(7)

where

u = z (1− γ) + γy −
R∑
r=1

LT
rψ (Lrz) . (8)

Regarding the projection operator PC (u), this is applied element-wise to the vector u and it is defined as:

PC (u) =


u, if a ≤ u ≤ b
a, if u < a

b, if u > b.

(9)

The derivative of PC (u) w.r.t u is computed as:

dPC (u)

du
=

{
1, if a ≤ u ≤ b
0, elsewhere,

(10)

and therefore the Jacobian ∂PC(u)
∂u corresponds to a binary diagonal matrix of size N × N , whose diagonal elements are

non-zero only if the corresponding values of u are in the range
[
a b
]
. Now, let us denote as e the N × 1 vector obtained by

the matrix vector product of the Jacobian ∂PC(u)
∂u with the gradient ∂`(x̂,x)∂x̂ , that is

e =
∂PC (u)

∂u
· ∂` (x̂,x)

∂x̂
. (11)

Weight parameter γ : Using Eq. (8) it is straightforward to show that

∂u

∂γ
= (y − z)

T (12)

and thus ∂`(x̂,x)
∂γ is computed as

∂` (x̂,x)

∂γ
= (y − z)

T · e. (13)

Expansion coefficients π : To compute the gradient of the loss function ` w.r.t to the expansion coefficients π of the
mixture of Gaussian Radial Basis Functions (RBF), first we express the output of each RBF mixture as a vector inner product.
Specifically, it holds that

ψi (x) =

M∑
j=1

πijρj (|x− µj |) = ρT (x)πi, (14)

where ρ (x) =
[
ρ (|x− µ1|) ρ (|x− µ2|) . . . ρ (|x− µM |)

]T ∈ RM . We note that in the defintion of ρ (x) we
have dropped the subscript j from the RBF ρj (r) = exp

(
−εjr2

)
. The reason is that in this work we use a com-

mon precision parameter for all the mixture components, i.e. ε = εj , ∀j. Based on this notation we can further express
ψ (x) =

[
ψ1 (x1) ψ2 (x2) . . . ψF (xF)

]T
as

ψ (x) = RT (x)π (15)

where π =
[
πT
1 . . . πT

F

]T
, x ∈ RF and

RT (x) =


ρT (x1) 0 . . . 0

0 ρT (x2) 0
...

. . .
0 . . . 0 ρT (xF)

 ∈ RF×(M ·F). (16)

Now, using Eqs. (8), (14) and (15) we have

u = z (1− γ) + γy −
R∑
r=1

LT
rR

T (Lrz)π (17)

which directly leads us to compute the Jacobian ∂u
∂π as

∂u

∂π
= −

R∑
r=1

R (Lrz)Lr. (18)

Finally, combining Eqs. (11) and (18) we get

∂` (x̂,x)

∂π
= −

R∑
r=1

RT (Lrz)Lre. (19)

Weighted sum coefficients W : To simplify the computation of the gradient of the loss function w.r.t W, first we obtain
an equivalent expression for the non-local operator Lr that we introduced in the main paper. We recall that Lr is obtained as
the composition of three linear operators, that is

Lr = WF̃Pir , (20)

where Pir =
[
PT
ir,1

PT
ir,2

. . . PT
ir,K

]T ∈ R(P ·K)×N and

F̃ =


F O . . . O
O F . . . O
...

. . .
O F

 ∈ R(F ·K)×(P ·K)

is a block diagonal matrix whose diagonal elements correspond to the patch-transform matrix F. According to the above, we
can re-write the non-local operator as

Lr =

K∑
k=1

wkFPir,k =

K∑
k=1

wkTir,k . (21)

Plugging the new expression of Lr into Eq. (8) we get

u = z (1− γ) + γy −
R∑
r=1

K∑
k=1

wkT
T
ir,k

ψ

(
K∑
k=1

wkzir,k

)
, (22)

where zir,k = Tir,kz. Now, it is straightforward to compute the partial derivative of u w.r.t each wi. Based on Eq. (22), we
obtain

∂u

∂wi
= −

R∑
r=1

∂

∂wi

wiTT
ir,i +

∑
k 6=i

wkT
T
ir,k

ψ (zir)


= −

R∑
r=1

(
ψT (zir)Tir,i +

K∑
k=1

wkz
T
ir,i

∂ψ (zir)

∂zir
Tir,k

)
, (23)

where zir =
K∑
k=1

wkzir,k . Note that due to the decoupled formulation of ψ, the Jacobian ∂ψ(zir)
∂zir

is a diagonal matrix of the

form:

∂ψ (x)

∂x
=


∂ψ1(x1)
∂x1

0 . . . 0

0 ∂ψ2(x2)
∂x2

0
...

. . .
0 . . . 0 ∂ψF (xF)

∂xF

 , (24)

where

∂ψi (x)

∂x
= −2ε

M∑
j=1

πij (x− µj) exp
(
−ε (x− µj)2

)
. (25)

Combining Eqs (11) and (23) we obtain:

∂` (x̂,x)

∂wi
= −

R∑
r=1

(
ψT (zir)Tir,i +

K∑
k=1

wkz
T
ir,i

∂ψ (zir)

∂zir
Tir,k

)
e. (26)

Patch-transform coefficients F : Let us express the matrix F ∈ RF×P in terms of its column vectors, i.e. F =
[
f1 . . . fF

]T
with fi ∈ RP ∀ i = 1, . . . , F . Now, let us also re-write Lrz as

Lrz =

(
K∑
k=1

wkF Pir,k

)
z

= F

(
K∑
k=1

wkPir,k

)
z = F (Brz)

= Fz̃r =

fT1 z̃r
...

fTF z̃r

 . (27)

Next, we use Eq. (27) to re-write Eq. (8) as

u = z (1− γ) + γy −
R∑
r=1

BT
r

[
f1 . . . fF

]
ψ


fT1 z̃r

...
fTF z̃r




= z (1− γ) + γy −
R∑
r=1

BT
r

[
f1 . . . fF

] ψ1

(
fT1 z̃r

)
...

ψF
(
fTF z̃r

)


= z (1− γ) + γy −
R∑
r=1

BT
r

 F∑
j=1

fjψj
(
fTj z̃r

) . (28)

This last reformulation of u greatly facilitates the computation of its Jacobian w.r.t fi, ∀i = 1, . . . , F . Now, we can show that

∂u

∂fi
= −

R∑
r=1

(
IP · ψi (fiz̃r) + fiz̃

T
r ·

∂ψi (fiz̃r)

(fiz̃r)

)
Br, (29)

where IP ∈ RP×P is the identity matrix. Consequently, it holds

∂` (x̂,x)

∂fi
= −

R∑
r=1

(
IP · ψi (fiz̃r) + fiz̃

T
r ·

∂ψi (fiz̃r)

(fiz̃r)

)
Bre. (30)

1.2. Joint Parameter Learning

In the joint-training scheme the parameters of all the stages of the network are learned simultaneously by minimizing the
loss function of Eq. (2) which depends only on the final output of the network x̂S . In this case we need to compute the
gradient of the loss function `

(
x̂S ,x

)
w.r.t the parameters Θt of each stage t. Using the chain-rule this can be computed as

∂`
(
x̂S ,x

)
∂Θt

=
∂x̂t

∂Θt
· ∂x̂S

∂x̂t
·
∂`
(
x̂S ,x

)
∂x̂S

, (31)

where ∂x̂t

∂Θt is calculated by combining Eq. (7) and the results of Section 1.1, while
∂`(x̂S ,x)
∂x̂S is given by Eq. (5). Therefore,

the only remaining Jacobian that we need is ∂x̂S

∂x̂t . This quantity can be computed recursively as

∂x̂S

∂x̂t
=
∂x̂t+1

∂x̂t
· ∂x̂t+2

∂x̂t+1
· · · ∂x̂S

∂x̂S−1
. (32)

Consequently, it suffices to derive the expression for the Jacobian ∂x̂t+1

∂x̂t where x̂t+1 is obtained from x̂t according to

x̂t+1 = PC

(
x̂t
(
1− γt+1

)
+ γt+1y −

R∑
r=1

(
Lt+1
r

)T
ψt+1

(
Lt+1
r x̂t

))
= PC

(
ut+1

)
. (33)

Using Eq. (33), we finally get

∂x̂t+1

∂x̂t
=
∂ut+1

∂x̂t
·
∂PC

(
ut+1

)
∂ut+1

=

(
IN
(
1− γt+1

)
−

R∑
r=1

(
Lt+1
r

)T ∂ψt+1
(
Lt+1
r x̂t

)
∂Lt+1

r x̂t
Lt+1
r

)
Pt+1, (34)

where IN ∈ RN×N is the identity matrix and Pt+1 =
PC(ut+1)
∂ut+1 .

2. Grayscale and Color Image Denoising Comparisons
In this section we provide additional grayscale and color image denoising results for different noise levels. For grayscale

image denoising we compare the performance of our non-local models with TNRD [2], MLP [1], EPLL [4] and BM3D [3],
while for color image denoising we compare our non-local CNN with the state-of-the-art CBM3D method [3]. Besides
the visual comparisons, in the captions of the figures we provide the PSNR score (in dB) of each method to also allow a
quantitative comparison.

(a) (b)

(c) (d)

(e) (f)
Figure 1. Grayscale image denoising. (a) Original image, (b) Noisy image corrupted with Gaussian noise (σ = 15) ; PSNR = 24.57 dB.
(c) Denoised image using NLNet55×5 ; PSNR = 31.58 dB. (d) Denoised image using TNRD5

7×7 [2] ; PSNR = 31.34 dB. (e) Denoised
image using EPLL [4] ; PSNR = 31.02 dB. (f) Denoised image using BM3D [3] ; PSNR = 31.29 dB. Images are best viewed
magnified on screen. Note the differences of the denoised results in the highlighted region.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Grayscale image denoising. (a) Original image, (b) Noisy image corrupted with Gaussian noise (σ = 25) ; PSNR = 20.18 dB.
(c) Denoised image using NLNet57×7 ; PSNR = 30.25 dB. (d) Denoised image using TNRD5

7×7 [2] ; PSNR = 30.15 dB. (e) Denoised
image using EPLL [4] ; PSNR = 29.92 dB. (f) Denoised image using MLP [1] ; PSNR = 30.16dB. Images are best viewed magnified
on screen. Note the differences of the denoised results in the highlighted region.

(a) (b) (c) (d)
Figure 3. Color image denoising. (a) Original image, (b) Noisy image corrupted with Gaussian noise (σ = 25) ; PSNR = 20.34 dB. (c)
Denoised image using CNLNet55×5 ; PSNR = 31.14 dB. (d) Denoised image using CBM3D [3] ; PSNR = 30.75 dB. Images are best
viewed magnified on screen. Note the differences of the denoised results in the highlighted region.

(a) (b)

(c) (d)
Figure 4. Color image denoising. (a) Original image, (b) Noisy image corrupted with Gaussian noise (σ = 50) ; PSNR = 15.10 dB. (c)
Denoised image using CNLNet55×5 ; PSNR = 24.74 dB. (d) Denoised image using CBM3D [3] ; PSNR = 24.39 dB. Images are best
viewed magnified on screen. Note the differences of the denoised results in the highlighted region.

References
[1] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural networks compete with bm3d? In Proc. IEEE Int.

Conf. Computer Vision and Pattern Recognition, pages 2392–2399, 2012. 5, 7
[2] Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE

Trans. Pattern Anal. Mach. Intell, 2016. to appear. 5, 6, 7
[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE

Trans. Image Process., 16(8):2080–2095, 2007. 5, 6, 8
[4] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In Proc. IEEE Int. Conf. Computer

Vision, pages 479–486. IEEE, 2011. 5, 6, 7

