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1. Computation of skin relative absorbance
vectors σm and σh

Skin albedo A can be expressed by a combination of two

pigments, melanin and hemoglobin, as

A(p) = σρm(p)
m σ

ρh(p)
h , (1)

where ρm(p), ρh(p), σm, σh are the pigment densities and

relative absorbance vectors of melanin and hemoglobin, re-

spectively.

In solving for the relative absorbance vectors σm, σh,

we first apply the logarithm operation to Eq. (1):

logA(p) = ρm(p) logσm + ρh(p) logσh. (2)

Different logA with different pigment densities thus lie in a

plane P in the log-RGB space with two bias vectors logσm

and logσh as shown in Fig. 1(a).

To compute the two bias vectors, which are assumed to

be invariant from person to person, we use the face dataset

in [12]. Diffuse skin patches under a neutral illumination

color are first extracted using the method in [1]. We then

use the intrinsic image decomposition of [12] to extract the

skin albedo without diffuse shading. According to Eq. (2),

all the decomposed skin albedo values ideally lie in a plane

P formed by logσm and logσh in log-RGB space. How-

ever, since slight shading variations likely still exist in the

decomposed albedo skin samples, the skin albedo values

will not lie in a perfect plane. So we use Principal Com-

ponents Analysis to extract the plane P and project all skin

samples onto P along the shading direction 1 = (1, 1, 1)T

in log-RGB space to remove the shading effects. After this

projection onto P, Independent Components Analysis is ap-

plied on the projected skin albedo samples to extract the

two independent bias vectors. We compute the bias vec-

tors for each skin patch and use the average as the value of

logσm and logσh. Figure 1(b) shows varying skin albedos

with different melanin and hemoglobin densities using the

computed melanin absorbance vector σm and hemoglobin

absorbance vector σh.

∗This work was done while Chen Li was an intern at Microsoft Re-

search.

Among all the examined skin patches, the (average, stan-

dard derivation) of angular differences between their esti-

mated bias vectors and the average values of logσm and

logσh are (3.70◦, 2.33◦) and (9.61◦, 8.68◦), respectively.

Based on this empirical study and claims in [10], σm and

σh can be treated as approximately the same among differ-

ent people, and variations in skin color are mainly caused

by differences in pigment densities ρ.

2. Uniform Illumination Chromaticity Estima-
tion

Although our method is formulated to estimate direc-

tionally variant illumination, we can compare it with tech-

niques for estimating a uniform illumination chromaticity.

We specifically compare to IIC [9], SpePL [2], FacePL [6]

and FaceGM [1]. IIC [9] assumes a direct correlation be-

tween illumination chromaticity and image chromaticity in

inverse-intensity chromaticity space. SpePL [2] combines

the dichromatic model with a hard Planckian locus con-

straint. FacePL [6] utilizes a soft Planckian locus constraint

and a statistical skin albedo distribution. FaceGM [1] uses

gamut mapping with a generic statistical model of skin color

to estimate the illumination color. All of the comparison

methods are able to handle only uniform illumination chro-

maticity.

For a quantitative comparison, we use the reprocessed

version of Gehler’s ColorChecker dataset [3] provided by

[7], where the images have linear camera responses and cal-

ibrated illumination color. From this dataset, we manually

select all of the 37 facial images that contain specular reflec-

tion and use them for evaluation. We use the error metric

suggested by Hordley and Finlayson [4]:

e = arccos(
ΓT
e Γm

‖Γe‖‖Γm‖ ), (3)

which measures the angle between the RGB triplets of esti-

mated illumination Γe and ground truth illumination Γm.

The measured angular errors of the proposed method as

well as the comparison methods are listed in Tab. 1, includ-

ing the minimum, median, mean, maximum and standard

4321



Melanin

H
em

og
lo
bi
n

(a) (b)
Figure 1. Melanin-hemoglobin based skin model in log-RGB space. (a) In the log-RGB space, the log of the melanin absorbance vector

σm and hemoglobin absorbance vector σh forms a plane. (b) Varying skin albedos with different combinations of melanin and hemoglobin

density.

Table 1. Angular error measurement for illumination chromaticity

estimation

Algorithm Min Median Mean Max Std

IIC [9] 1.90 7.12 8.12 15.1 3.63

SpePL [2] 0.17 2.85 2.89 6.25 1.50

FacePL [6] 3.08 4.49 4.98 9.70 1.75

FaceGM [1] 0.02 3.80 3.96 8.21 1.84

Ours 0.02 0.76 0.88 3.43 0.77

derivation of the errors. The overall performance of our

approach surpasses the others, with greater robustness as

indicated by the standard deviation of errors. A few estima-

tion results are shown in Fig. 2, and the rest are provided in

Fig. 3-Fig. 8. The ground truth is given in the last column

of these figures.

Because of their Planckian locus constraints, SpePL and

FacePL have larger estimation errors when the lighting de-

Input IIC [9] SpePL [2] FacePL [6] FaceGM [1] Ours Ground truth

9.48 5.94 5.05 3.66 1.32 0.00

9.74 3.29 7.47 7.43 0.08 0.00

15.1 4.64 4.46 1.52 0.24 0.00

(a) (b) (c) (d) (e) (f) (g)

Figure 2. Some results for illumination chromaticity estimation.

(a) Input images. (b/c/d/e/f/g) Illumination corrected images with

the chromaticity estimated using (b) IIC [9], (c) SpePL [2], (d)

FacePL [6], (e) FaceGM [1], (f) our method, and (g) calibrated

ground truth using a ColorChecker. Measured errors are listed in

the lower right corners.

viates from the Planckian assumption, such as in the first

row of Fig. 2. FaceGM is relatively less stable, as reflected

by its higher standard deviation in Tab. 1, since its gamut

mapping approach may lead to a large range of feasible il-

lumination chromaticities, especially for dark skin colors

such as in the second row of Fig. 2, which have a rela-

tively narrow gamut. The performance of IIC is limited

by the accuracy of specular-diffuse segmentation, which is

often challenging for human skin, especially where high-

lights may be subtle, such as in the third row of Fig. 2. Al-

though our method also utilizes specular highlights for esti-

mating illumination chromaticity, it is still effective in cases

where specular highlights are weak because of the melanin-

hemoglobin based skin model.

3. Additional Results for Specular Highlight
Removal

In Figure 9-Fig. 13, we present additional results for

specular highlight removal using all 37 facial images

that contain visible specular highlights in Gehler’s Col-

orChecker dataset [3, 7]. In each figure, column (a) is the

input image; columns (b/c/d/e/f) are the separated diffuse

images by (b) ILD[8], (c) MDCBF[11], (d) DarkP[5], (e)

FacePL[6], and (f) our method.
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Input IIC [9] SpePL [2] FacePL [6] FaceGM [1] Ours Ground truth

7.12◦ 1.10◦ 3.86◦ 4.74◦ 1.87◦ 0.00◦

3.31◦ 2.63◦ 3.72◦ 4.05◦ 0.19◦ 0.00◦

6.93◦ 1.11◦ 4.81◦ 4.93◦ 2.26◦ 0.00◦

8.27◦ 2.14◦ 3.82◦ 5.31◦ 0.42◦ 0.00◦

6.27◦ 2.58◦ 3.48◦ 3.76◦ 0.06◦ 0.00◦

9.74◦ 3.29◦ 7.47◦ 7.43◦ 0.08◦ 0.00◦

14.2◦ 2.32◦ 4.74◦ 4.17◦ 0.62◦ 0.00◦

(a) (b) (c) (d) (e) (f) (g)
Figure 3. Additional results for illumination chromaticity estimation. (a) Input images. (b/c/d/e/f/g) Illumination corrected images with the

chromaticity estimated by using (b) IIC [9], (c) SpePL [2], (d) FacePL [6], (e) FaceGM [1], (f) our method, and (g) calibrated ground truth

using a ColorChecker. Below each corrected image is the measured error of the estimated illumination chromaticity.
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Input IIC [9] SpePL [2] FacePL [6] FaceGM [1] Ours Ground truth

14.1◦ 2.20◦ 4.74◦ 1.66◦ 0.19◦ 0.00◦

12.5◦ 2.02◦ 4.11◦ 1.42◦ 0.88◦ 0.00◦

13.4◦ 4.66◦ 4.46◦ 2.37◦ 0.86◦ 0.00◦

15.1◦ 4.64◦ 4.32◦ 1.52◦ 0.24◦ 0.00◦

6.01◦ 3.37◦ 4.12◦ 2.81◦ 0.50◦ 0.00◦

13.0◦ 1.19◦ 4.50◦ 2.60◦ 0.98◦ 0.00◦

14.4◦ 1.30◦ 4.34◦ 2.77◦ 1.01◦ 0.00◦

(a) (b) (c) (d) (e) (f) (g)
Figure 4. Additional results for illumination chromaticity estimation. (a) Input images. (b/c/d/e/f/g) Illumination corrected images with the

chromaticity estimated by using (b) IIC [9], (c) SpePL [2], (d) FacePL [6], (e) FaceGM [1], (f) our method, and (g) calibrated ground truth

using a ColorChecker. Below each corrected image is the measured error of the estimated illumination chromaticity.
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Input IIC [9] SpePL [2] FacePL [6] FaceGM [1] Ours Ground truth

5.26◦ 3.23◦ 3.89◦ 0.02◦ 0.71◦ 0.00◦

13.4◦ 2.96◦ 4.49◦ 4.30◦ 1.26◦ 0.00◦

10.8◦ 2.85◦ 4.59◦ 1.51◦ 0.99◦ 0.00◦

9.63◦ 2.74◦ 8.90◦ 7.96◦ 0.63◦ 0.00◦

1.90◦ 1.61◦ 3.81◦ 3.70◦ 3.43◦ 0.00◦

9.94◦ 3.08◦ 3.09◦ 2.55◦ 0.93◦ 0.00◦

9.50◦ 5.94◦ 5.05◦ 3.66◦ 1.32◦ 0.00◦

(a) (b) (c) (d) (e) (f) (g)
Figure 5. Additional results for illumination chromaticity estimation. (a) Input images. (b/c/d/e/f/g) Illumination corrected images with the

chromaticity estimated by using (b) IIC [9], (c) SpePL [2], (d) FacePL [6], (e) FaceGM [1], (f) our method, and (g) calibrated ground truth

using a ColorChecker. Below each corrected image is the measured error of the estimated illumination chromaticity.
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Input IIC [9] SpePL [2] FacePL [6] FaceGM [1] Ours Ground truth

4.67◦ 5.76◦ 6.10◦ 4.99◦ 0.60◦ 0.00◦

4.72◦ 2.38◦ 3.69◦ 2.60◦ 1.02◦ 0.00◦

7.57◦ 4.18◦ 6.03◦ 3.81◦ 0.86◦ 0.00◦

4.04◦ 2.86◦ 7.72◦ 4.20◦ 0.86◦ 0.00◦

9.38◦ 3.80◦ 5.42◦ 3.52◦ 0.23◦ 0.00◦

6.13◦ 2.87◦ 5.73◦ 4.58◦ 1.11◦ 0.00◦

6.86◦ 2.50◦ 9.64◦ 8.21◦ 0.06◦ 0.00◦

(a) (b) (c) (d) (e) (f) (g)
Figure 6. Additional results for illumination chromaticity estimation. (a) Input images. (b/c/d/e/f/g) Illumination corrected images with the

chromaticity estimated by using (b) IIC [9], (c) SpePL [2], (d) FacePL [6], (e) FaceGM [1], (f) our method, and (g) calibrated ground truth

using a ColorChecker. Below each corrected image is the measured error of the estimated illumination chromaticity.
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Input IIC [9] SpePL [2] FacePL [6] FaceGM [1] Ours Ground truth

11.1◦ 3.02◦ 9.70◦ 3.63◦ 0.18◦ 0.00◦

4.73◦ 1.35◦ 3.86◦ 7.76◦ 0.04◦ 0.00◦

5.31◦ 4.55◦ 3.71◦ 3.80◦ 0.76◦ 0.00◦

7.56◦ 5.42◦ 3.77◦ 4.40◦ 0.50◦ 0.00◦

5.18◦ 0.67◦ 3.69◦ 3.60◦ 2.68◦ 0.00◦

4.29◦ 6.25◦ 7.03◦ 5.92◦ 0.50◦ 0.00◦

4.43◦ 1.13◦ 3.73◦ 4.00◦ 0.02◦ 0.00◦

(a) (b) (c) (d) (e) (f) (g)
Figure 7. Additional results for illumination chromaticity estimation. (a) Input images. (b/c/d/e/f/g) Illumination corrected images with the

chromaticity estimated by using (b) IIC [9], (c) SpePL [2], (d) FacePL [6], (e) FaceGM [1], (f) our method, and (g) calibrated ground truth

using a ColorChecker. Below each corrected image is the measured error of the estimated illumination chromaticity.
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Input IIC [9] SpePL [2] FacePL [6] FaceGM [1] Ours Ground truth

4.60◦ 0.17◦ 3.35◦ 3.44◦ 1.61◦ 0.00◦

5.50◦ 2.93◦ 3.19◦ 5.02◦ 2.13◦ 0.00◦

(a) (b) (c) (d) (e) (f) (g)
Figure 8. Additional results for illumination chromaticity estimation. (a) Input images. (b/c/d/e/f/g) Illumination corrected images with the

chromaticity estimated by using (b) IIC [9], (c) SpePL [2], (d) FacePL [6], (e) FaceGM [1], (f) our method, and (g) calibrated ground truth

using a ColorChecker. Below each corrected image is the measured error of the estimated illumination chromaticity.
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Input ILD [8] MDCBF [11] DarkP [5] FacePL [6] Ours

(a) (b) (c) (d) (e) (f)
Figure 9. Additional results for specular highlight removal. (a) Input images. (b/c/d/e/f) Separated diffuse images by (b) ILD [8], (c)

MDCBF [11], (d) DarkP [5], (e) FacePL [6], and (f) our method.
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Input ILD [8] MDCBF [11] DarkP [5] FacePL [6] Ours

(a) (b) (c) (d) (e) (f)
Figure 10. Additional results for specular highlight removal. (a) Input images. (b/c/d/e/f) Separated diffuse images by (b) ILD [8], (c)

MDCBF [11], (d) DarkP [5], (e) FacePL [6], and (f) our method.
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Input ILD [8] MDCBF [11] DarkP [5] FacePL [6] Ours

(a) (b) (c) (d) (e) (f)
Figure 11. Additional results for specular highlight removal. (a) Input images. (b/c/d/e/f) Separated diffuse images by (b) ILD [8], (c)

MDCBF [11], (d) DarkP [5], (e) FacePL [6], and (f) our method.
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Input ILD [8] MDCBF [11] DarkP [5] FacePL [6] Ours

(a) (b) (c) (d) (e) (f)
Figure 12. Additional results for specular highlight removal. (a) Input images. (b/c/d/e/f) Separated diffuse images by (b) ILD [8], (c)

MDCBF [11], (d) DarkP [5], (e) FacePL [6], and (f) our method.
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Input ILD [8] MDCBF [11] DarkP [5] FacePL [6] Ours

(a) (b) (c) (d) (e) (f)
Figure 13. Additional results for specular highlight removal. (a) Input images. (b/c/d/e/f) Separated diffuse images by (b) ILD [8], (c)

MDCBF [11], (d) DarkP [5], (e) FacePL [6], and (f) our method.
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Input ILD [8] MDCBF [11] DarkP [5] FacePL [6] Ours

(a) (b) (c) (d) (e) (f)
Figure 14. Additional results for specular highlight removal. (a) Input images. (b/c/d/e/f) Separated diffuse images by (b) ILD [8], (c)

MDCBF [11], (d) DarkP [5], (e) FacePL [6], and (f) our method.
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