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1. Calibrating Blur Kernel
In this section, we describe our method to calibrate the

blur kernels for the light field refocused images. The optical
blur kernel is assumed to be a separable filter kernel such
that it can be written as a convolution of two 1D functions.
In this case, the blurred image I can be written as:

I = L ∗B(x, y) = L ∗ f(x) ∗ f(y), (1)

with B(x, y) = f(x) ∗ f(y) because the blur kernel is sep-
arable. To estimate the 1D blur kernels f(x) and f(y), we
use unidirectional binary patterns as described in [2]. In
our experiment, we use vertical and horizontal strip binary
patterns.

For a vertical pattern as shown in Figure 1, if the blur
kernel is separable, the blurred image is only related to the
blur kernel in the direction of x-axis:

I = L ∗ f(x) (2)

Then we can write this 1D-convolution into a matrix form:

m = Axbx, (3)

where column vector m is the vectorized blurred image; the
column vector bx is the 1D blur kernel in the x-direction;
each row of the matrix Ax is the un-blurred sharp image
intensities in the surrounding range in x-direction for the
corresponding pixel in m.

During calibration, given the sharp imageAx and blurred
image bx, the 1D blur kernel bx is determined by:

min.
bx

‖Axbx −m‖2 + λ‖∇bx‖1

subject to bx � 0,
(4)

with the second term in the energy function regularizing the
shape of the blurring kernel. The optimization problem in
Eq. 4 is convex and can be solved by a convex optimization
solver. We use the CVX toolbox [1] in the implementation.
The 1D blur kernel in the y-axis direction is optimized in
the same way using a vertical binary pattern.

With the estimated 1D blur kernels f(x) and f(y), the
blur kernel B(x, y) can be determined as:

B(x, y) = f(x) ∗ f(y). (5)
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Figure 1: The optical blur for a vertical binary edge pattern.
The blur kernel is assumed to be separable, so the blurred
image of the vertical pattern is independent from the blur
kernel in the y-axis f(y).

We repeat the above calibration with 26 focal settings
for a set of 21 reference depths from 200 mm to 1000 mm
equally spaced with 40 mm. The calibrated blur kernels of
refocused image for a plane placed 680 mm from the light
field camera are shown in Figure 2. Note that the shape
of the blur kernel is not circularly symmetrical since the
blur kernel for a refocused image from light field camera is
related to both the main lens shape and the arrangement of
the secondary lenslets array.
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Figure 2: The calibrated blur kernels of refocused image
for a plane placed 680 mm from the light field camera.
(a)(b)The 1D blur kernels f(x) and f(y). (c)The blur ker-
nels. The shapes of the blur kernels are not circularly sym-
metrical since the blur kernel for a refocused image from
light field camera is related to both the main lens shape and
the spatial arrangement of the secondary lenslets.

To get the differential blur kernel ∂B
∂d used in Section 5
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Figure 3: The depth recovery for the thin structures. Note that the depth estimations using the DFF method for points close to
the occlusion boundaries are inaccurate due to high frequency depth discontinuity. The light field method indoes not perform
well on the textureless regions and sharp edges in the background. Our method recovers the sharp depth discontinuity on the
boundaries of the thin structures.
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Figure 4: Limitations of our method. (a)(b) In the box marked in green, the thin structures in the near field have similar color
as the background. In this case, the matting estimation fails because switching the occlusion matte values for the points in
those regions will not introduce enough image intensity changes. (c) The depth of the background is close to the depth of the
thin occluder, thus the estimated occlusion matte includes edges in the background.

in the paper for estimating the depth, we assume the blur
kernel changes smoothly w.r.t. the depth. So we can ap-
proximate the differential blur kernel as:

∂B

∂d
(di) ≈

B(di + ∆d)−B(di)

∆d
(6)

2. More Results
We include more comparison results in Figure 3.

3. Limitations

As explained in the paper, our methods have several lim-
itations. First, if the thin structures in the near field have
similar color as the background. the occlusion matting es-
timation may fail because switching the occlusion matte
values for the points in those regions will not introduce
enough image intensity changes, as shown in Figure 4(a)(b).



Second, when the depth of the background is close to the
depth of the thin occluder, the occlusion matte estimation
tends to include the edges in the background as thin struc-
tures/occlusion boundaries, as shown in Figure 4(c).
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