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1Faculty of Computer and Information Science, University of Ljubljana, Slovenia
2Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

{alan.lukezic, luka.cehovin, matej.kristan}@fri.uni-lj.si
{vojirtom, matas}@cmp.felk.cvut.cz

Abstract

This is the supplementary material for the paper ”Dis-
criminative Correlation Filter with Channel and Spatial Re-
liability” submitted to the CVPR 2017. Due to spatial con-
straints, parts not crucial for understanding the DCF-CSR
tracker formulation, but helpful for gaining insights, were
moved here.

1. Derivation of the augmented Lagrangian
minimizer

This section provides the complete derivation of the
closed-form solutions for the relations (9,10) in the submit-
ted paper [3]. The augmented Lagrangian from Equation
(5) in [3] is

L(ĥc,h, l̂) = ‖ĥHc diag(f̂)− ĝ‖2 + λ

2
‖hm‖2 + (1)

[̂lH(ĥc − ĥm) + l̂H(ĥc − ĥm)] + µ‖ĥc − ĥm‖2,

with hm = (m�h). For the purposes of derivation we will
rewrite (1) into a fully vectorized form

L(ĥc,h, l̂) = ‖ĥHc diag(f̂)− ĝ‖2 + λ

2
‖hm‖2+ (2)[̂

lH(ĥc −
√
DFMh) + l̂H(ĥc −

√
DFMh)

]
+

µ‖ĥc −
√
DFMh‖2,

where F denotes D × D orthonormal matrix of Fourier
coefficients, such that the Fourier transform is defined as
x̂ = F(x) =

√
DFx and M = diag(m). For clearer rep-

resentation we denote the four terms in the summation (2)
as

L(ĥc,h, l̂) = L1 + L2 + L3 + L4, (3)

where

L1 =
(
ĥHc diag(f̂)− ĝ

)(
ĥHc diag(f̂)− ĝ

)T
, (4)

L2 =
λ

2
‖hm‖2, (5)

L3 = l̂H(ĥc −
√
DFMh) + l̂H(ĥc −

√
DFMh), (6)

L4 = µ‖ĥc −
√
DFMh‖2. (7)

Minimization of (Equation 5 in [3]) is an iterative process
at which the following minimizations are required:

ĥopt
c = argmin

hc

L(ĥc,h, l̂), (8)

hopt = argmin
h

L(ĥopt
c ,h, l̂). (9)

Minimization w.r.t. to ĥc is derived by finding ĥc at which
the complex gradient of the augmented Lagrangian van-
ishes, i.e.,

∇
ĥc
L ≡ 0, (10)

∇
ĥc
L1 +∇ĥc

L2 +∇ĥc
L3 +∇ĥc

L4 ≡ 0. (11)

The partial complex gradients are:

∇
ĥc
L1 = (12)

=
∂

∂ĥc

[(
ĥHc diag(f̂)− ĝ

)(
ĥHc diag(f̂)− ĝ

)T]
=

=
∂

∂ĥc

[
ĥHc diag(f̂)diag(f̂)H ĥc − ĥHc diag(f̂)ĝH−

ĝdiag(f̂)H ĥc + ĝĝH
]
=

= diag(f̂)diag(f̂)H ĥc − diag(f̂)ĝH ,
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∇
ĥc
L2 = 0, (13)

∇
ĥc
L3 = (14)

=
∂

∂ĥc

[̂
lH

(
ĥc −

√
DFMh

)
+ l̂H

(
ĥc −

√
DFMh

)]
=

=
∂

∂ĥc

[̂
lH ĥc − l̂H

√
DFMh+ l̂T ĥc − l̂

H√
DFMh

]
=

= l̂,

∇
ĥc
L4 = (15)

=
∂

∂ĥc

[
µ
(
ĥc −

√
DFMh

)(
ĥc −

√
DFMh

)T]
=

=
∂

∂ĥc

[
µ
(
ĥcĥ

H
c − ĥc

√
DhHMFH−

√
DFMhĥHc +DFMhhHMFH

)]
=

= µĥc − µ
√
DFMh.

Note that
√
DFMh = ĥm according to our original defini-

tion of ĥm. Plugging (12-15) into (11) yields

diag(f̂)diag(f̂)H ĥc − diag(f̂)ĝH + l̂µĥc − µĥm = 0,
(16)

ĥc =
diag(f̂)ĝH + µĥm − l̂

diag(f̂)diag(f̂)H + µ
,

which can be rewritten into

ĥc =
f̂ � ĝ + µĥm − l̂

f̂ � f̂ + µ
. (17)

Next we derive the closed-form solution of (9). The optimal
h is obtained when the complex gradient w.r.t. h vanishes,
i.e.,

∇hL ≡ 0 (18)
∇hL1 +∇hL2 +∇hL3 +∇hL4 ≡ 0. (19)

The partial gradients are

∇hL1 = 0, (20)

∇hL2 = (21)

=
∂

∂h

[
λ

2
(Mh)

T
(Mh)

]
=

∂

∂h

[
λ

2
hHMMh

]
.

Since we defined mask m as real-valued binary mask, the
product MM can be simplified into M and the result for
∇hL2 is

∇hL2 =
λ

2
Mh. (22)

The remaining gradients are as follows:

∇hL3 = (23)

=
∂

∂h

[̂
lH

(
ĥc −

√
DFMh

)
+ l̂H

(
ĥc −

√
DFMh

)]
=

=
∂

∂h

[̂
lH ĥc − l̂H

√
DFMh+ l̂T ĥc − l̂

H√
DFMh

]
=

= −
√
DMFH l̂,

∇hL4 = (24)

=
∂

∂h

[
µ
(
ĥc −

√
DFMh

)T(
ĥc −

√
DFMh

)]
=

=
∂

∂h

[
µ
(
ĥHc ĥc − ĥHc

√
DFMh−

√
DhHMFH ĥc +DhHMh

)]
=

= −µ
√
DMFH ĥc + µDMh.

Plugging (20-24) into (19) yields

λ

2
Mh−

√
DMFH l̂− µ

√
DMFH ĥc + µDMh = 0,

(25)

Mh = M

√
DFH (̂l+ µĥc)

λ
2 + µD

.

Using the definition of the inverse Fourier transform, i.e.,
F−1(x̂) = 1√

D
FH x̂, (25) can be rewritten into

m� h = m� F
−1(̂l+ µĥc)
λ
2D + µ

. (26)

The values in m are either zero or one. Elements in h
that correspond to the zeros in m can in principle not be
recovered from (26) since this would result in division by
zero. But our initial definition of the problem was to seek
solutions for the filter that satisfies the following relation
h ≡ h �m. This means the values corresponding to ze-
ros in m should be zero in h. Thus the proximal solution
to (26) is

h = m� F
−1(̂l+ µĥc)
λ
2D + µ

. (27)



2. Convergence of the derived optimization
The optimization of augmented Lagrangian (Algorithm

1 in the paper) is central to the proposed tracking algorithm.
At each tracking iteration, we constrain the optimization to
run for four iterations since the major drop in filter error
is achieved within the first few steps. For convenience, we
visualize here the convergence profile.

Figure 1 shows the average squared difference between
result of the correlation of the the filter constrained by the
mask function and the ideal output. This graph was ob-
tained by averaging 60 examples of initializing a filter on a
target (one per VOT2015 sequence) and scaling each to an
interval between zero and one. It is clear that the error drops
by 80% within the first few iterations. The reduction from
the remaining iterations is due to reduction of the errors in
the sidelobes of the filter.
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Figure 1: Convergence of our optimization method. The
graph is averaged over the initializations in 60 sequences,
while for each sequence it is normalized to have maximum
cost at 1 and minimum at 0. Due to the different absolute
cost values for each optimization, normalization is used to
demonstrate only how cost changes during the optimization.

3. Time analysis
The average speed of our tracker measured on the

VOT2016 dataset is approximately 13 frames-per-second or
77 milliseconds per-frame. Figure 2 shows the processing
time required by each step of the SCR-DCF. A tracking it-
eration is divided into two steps: (i) target localization and
(ii) the visual model update. Target localization takes in
average 35 milliseconds at each frame and is composed of
two sub-steps: estimation of object translation (23ms) and
scale change estimation (12ms). The visual model update
step takes on average 42 milliseconds. It consists of three
sub-steps: spatial reliability map construction (16ms), filter
update (12ms) and scale model update (14ms). Filter op-
timization, which is part of the filter update step, takes on
average 7 milliseconds.
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Update
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Scale estimation
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Reliability 
map 16ms

Filter update 
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Figure 2: A single iteration processing time decomposed
across the main steps of the SCR-DCF.

4. VOT benchmarks
In the paper [3] Figure 7 shows the results of ex-

pected average overlap measure for VOT2015 [2] and
VOT2016 [1] challenge. For better clarity we showed only
top-performing trackers. Full results are presented here.
The VOT2015 [2] challenge results with all 61 trackers and
the CSR-DCF are shown in Figure 3. Figure 4 shows the re-
sults for 70 trackers and CSR-DCF on VOT 2016 [1] chal-
lenge.
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Figure 3: Expected average overlap plot for full VOT2015 [2] (left) benchmark with the proposed CSR-DCF tracker. Legend
is shown on the right side.
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Figure 4: Expected average overlap plot for full VOT2016 [1] (left) benchmark with the proposed CSR-DCF tracker. Legend
is shown on the right side.


