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1 Formulation

1.1 Single-Channel Features

Solution in the Primal Domain.

min
w
||A0w − y||22 + λ1||w||22 + λ2

k∑
i=1

||Aiw||22 (1)

The primal objective function fp in Eq. (1) can be rewritten by stacking the
context image patches below the target image patch forming a new data matrix
B ∈ R(k+1)n×n. The new regression target ȳ ∈ R(k+1)n concatenates y with
zeros.

fp(w,B) =

∥∥∥∥∥∥∥∥∥


A0√
λ2A1

...√
λ2Ak

w −


y
0
...
0


∥∥∥∥∥∥∥∥∥
2

2

+ λ1||w||22 = ‖Bw − ȳ‖22 + λ1||w||22 (2)

where w ∈ Rn, B ∈ R(k+1)n×n, ȳ ∈ R(k+1)n

Since fp(w,B) is convex, it can be minimized by setting the gradient to zero,
yielding:

∇wf(w) = 2BT (Bw − ȳ) + 2λ1w = 0 (3)

Solving for w:

w = (BTB + λ1I)−1BT ȳ (4)

Identity for circulant matrices (F is the FFT matrix):

X = F diag(x̂) FH

XT = F diag(x̂∗) FH

}
XTX = F diag(x̂∗ � x̂) FH (5)
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Therefore:

BTB = AT
0 A0 + . . .+ λ2 AT

k Ak = AT
0 A0 + λ2

k∑
i=1

AT
i Ai

= F diag(â∗
0 � â0) FH + λ2

k∑
i=1

F diag(â∗
i � âi) FH

= F diag

(
â∗
0 � â0 + λ2

k∑
i=1

â∗
i � âi

)
FH

(6)

BT ȳ =
[
AT

0

√
λ2A

T
1 . . .

√
λ2A

T
k

]


y
0
...
0


= AT

0 y = F diag (â∗
0) FH y = F diag (â∗

0 � ŷ)

(7)

Substituting into Eq. 4:

w =

[
F diag

(
â∗
0 � â0 + λ1 + λ2

k∑
i=1

â∗
i � âi

)
FH

]−1

F diag (â∗
0 � ŷ) (8)

FH w =

[
diag

(
â∗
0 � â0 + λ1 + λ2

k∑
i=1

â∗
i � âi

)]−1

diag (â∗
0 � ŷ) (9)

ŵ =
â∗
0 � ŷ

â∗
0 � â0 + λ1 + λ2

∑k
i=1 â∗

i � âi

(10)

Detection formula. The learned filter w is convolved with image patch z (search
window) in the next frame, where Z denotes its circulant matrix. The location
of the maximum response is the target location within the search window. The
primal detection formula in time and frequency domains is given by:

rp(w,Z) = Z w ⇔ r̂p = ẑ� ŵ (11)

Solution in the Dual Domain. Note that the solution in the primal domain in
Eq. (4) has the exact same form as the solution of the standard ridge regression
problem [2]. Hence, the solution in the dual domain is given by:

α =
(
BBT + λ1I

)−1
ȳ (12)

where α ∈ R(k+1)n
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BBT =


A0√
λ2A1

...√
λ2Ak

 [AT
0

√
λ2A

T
1 . . .

√
λ2A

T
k

]

=


A0A

T
0

√
λ2A0A

T
1 . . .

√
λ2A0A

T
k√

λ2A1A
T
0 λ2A1A

T
1 . . . λ2A1A

T
k

...
...

. . .
...√

λ2AkAT
0 λ2AkAT

1 . . . λ2AkAT
k


=

F . . . 0
...

. . .
...

0 . . . F


 diag(â0 � â∗

0) . . . diag(
√
λ2 â0 � â∗

k)
...

. . .
...

diag(
√
λ2 âk � â∗

0) . . . diag(λ2 âk � â∗
k)


FH . . . 0

...
. . .

...
0 . . . FH


= F̄DF̄H

(13)
Substituting into Eq. 12:

α =
[
F̄ (D + λ1I) F̄H

]−1
ȳ = F̄ (D + λ1I)−1 F̄H ȳ (14)

α̂ = (D + λ1I)−1 ˆ̄y =

diag(d00) . . . diag(d0k)
...

. . .
...

diag(dk0) . . . diag(dkk)


−1 ŷ

...
0

 (15)

where vectors djl with j, l ∈ {1, ..., k} are given by:
d00 = â0 � â∗

0 + λ1

djj = λ2 (âj � â∗
j ) + λ1, j 6= 0

djl =
√
λ2 (âj � â∗

l ), j 6= l

(16)

Note that the kernel trick can be applied, since all interactions between the
image patches occur as bi-products. Hence, the linear correlation can simply be
replaced by one of the kernel correlations as derived for conventional kernelized
CF trackers [1].
Since all blocks are diagonal, the system can be decomposed into n smaller sys-
tems of dimension R(k+1)×(k+1). This significantly reduces complexity and allows
for parallelization. Instead of solving one large system of dimension R(k+1)n×(k+1)n

to compute α, a separate system is solved for each pixel p ∈ {1, ..., n} of α, as
follows:

α̂(p) =

d00(p) . . . d0k(p)
...

. . .
...

dk0(p) . . . dkk(p)


−1 ŷ(p)

...
0

 (17)
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Detection Formula. Note that B contains the context patches in addition to
the target. Consequently, α ∈ R(k+1)n is composed of a concatenation of dual
variables {α0, . . . ,αk}.

rd(α,B,Z) = Z BTα (18)

rd = Z
[
AT

0

√
λ2A

T
1 . . .

√
λ2A

T
k

]

α0

α1

...
αk

 (19)

rd = F
[
diag(ẑ� â∗

0) . . .
√
λ2 diag(ẑ� â∗

k)
]
FH

α0

...
αk

 (20)

r̂d =
[
diag(ẑ� â∗

0) . . .
√
λ2 diag(ẑ� â∗

k)
] α̂0

...
α̂k

 (21)

r̂d = ẑ� â∗
0 � α̂0 +

√
λ2

k∑
i=1

ẑ� â∗
i � α̂i (22)

1.2 Multi-Channel Features

Solution in the Primal Domain. Now we want to solve the same problem for
multi-channel features and effectively learn a joint filter for all feature dimension.

min
w1,...,wm

∥∥∥∥∥
m∑
i=1

A0iwi − y

∥∥∥∥∥
2

2

+ λ1

m∑
i=1

‖wi‖22 + λ2

k∑
j=1

∥∥∥∥∥
m∑
i=1

Ajiwi

∥∥∥∥∥
2

2

(23)

Note that:

∥∥∥∥∥
m∑
i=1

A0iwi − y

∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥
[
A01 . . . A0m

] w1

...
wm

− y

∥∥∥∥∥∥∥
2

2

(24)

m∑
i=1

‖wi‖22 =

∥∥∥∥∥∥∥
w1

...
wm


∥∥∥∥∥∥∥
2

2

= ‖w̄‖22 (25)

k∑
j=1

∥∥∥∥∥
m∑
i=1

Ajiwi

∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥
 A01 . . . A0m

...
. . .

...
Ak1 . . . Akm


w1

...
wm


∥∥∥∥∥∥∥
2

2

(26)
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Therefore, the objective function fp(w̄; B̄) in Eq. (23) can be rewritten in a
similar fashion as in the case of single-channel features (Eq. (2)) with the differ-
ence that B̄ ∈ R(k+1)n×nm contains the base and context image patches as rows
and their corresponding features columns. The filters for the different feature
dimensions are stacked into w̄ ∈ Rnm.

fp(w̄; B̄) =

∥∥∥∥∥∥∥∥∥


A01 . . . A0m√
λ2A11 . . .

√
λ2A1m

...
. . .

...√
λ2Ak1 . . .

√
λ2Akm


w1

...
wm

−


y
0
...
0


∥∥∥∥∥∥∥∥∥
2

2

+ λ1

∥∥∥∥∥∥∥
w1

...
wm


∥∥∥∥∥∥∥
2

2

=
∥∥B̄w̄ − ȳ

∥∥2
2

+ λ1||w̄||22

(27)

where w̄ ∈ Rnm, B̄ ∈ R(k+1)n×nm, ȳ ∈ R(k+1)n

Note that the objective function fp(w̄; B̄) in Eq. (27) is convex. Hence, this
optimization problem can be solved by setting the gradient to zero:

∇wf(w̄) = 2B̄T (B̄w̄ − ȳ) + 2λ1w̄ = 0 (28)

Solving for w̄:
w̄ = (B̄T B̄ + λ1I)−1B̄T ȳ (29)

Applying the identity for circulant matrices (Eq. (5)) yields:

B̄T ȳ =

AT
01

√
λ2A

T
11 . . .

√
λ2A

T
k1

...
...

. . .
...

AT
0m

√
λ2A

T
1m . . .

√
λ2A

T
km




y
0
...
0


=

AT
01y
...

AT
0my

 =

F diag(â∗
01) FHy
...

F diag(â∗
0m) FHy

 =

F diag(â∗
01 � ŷ)

...
F diag(â∗

0m � ŷ)


(30)

B̄T B̄ =

AT
01

√
λ2A

T
11 . . .

√
λ2A

T
k1

...
...

. . .
...

AT
0m

√
λ2A

T
1m . . .

√
λ2A

T
km




A01 . . . A0m√
λ2A11 . . .

√
λ2A1m

...
. . .

...√
λ2Ak1 . . .

√
λ2Akm



=

 AT
01A01 + λ2

∑k
i=1 AT

i1Ai1 . . . AT
01A0m + λ2

∑k
i=1 AT

i1Aim

...
. . .

...

AT
0mA01 + λ2

∑k
i=1 AT

imAi1 . . . AT
0mA0m + λ2

∑k
i=1 AT

imAim



=

F . . . 0
...

. . .
...

0 . . . F


diag(c̄11) . . . diag(c̄1m)

...
. . .

...
diag(c̄m1) . . . diag(c̄mm)


FH . . . 0

...
. . .

...
0 . . . FH

 = F̄C̄F̄H

(31)
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where:

c̄11 = â∗
01 � â01 + λ2

k∑
i=1

â∗
i1 � âi1

c̄1m = â∗
01 � â0m + λ2

k∑
i=1

â∗
i1 � âim

c̄m1 = â∗
0m � â01 + λ2

k∑
i=1

â∗
im � âi1

c̄mm = â∗
0m � â0m + λ2

k∑
i=1

â∗
im � âim

(32)

Substituting into Eq. 29:

w̄ =
[
F̄ (C̄ + λ1I) F̄H

]−1
B̄T ȳ (33)

F̄Hw̄ = (C̄ + λ1I)−1 F̄HB̄T ȳ (34)

ˆ̄w =

diag(c̄11) + λ1I . . . diag(c̄1m)
...

. . .
...

diag(c̄m1) . . . diag(c̄mm) + λ1I


−1 diag(â∗

01 � ŷ)
...

diag(â∗
0m � ŷ)



=

 C̄11 . . . C̄1m

...
. . .

...
C̄m1 . . . C̄mm


−1 diag(â∗

01 � ŷ)
...

diag(â∗
0m � ŷ)


(35)

The target and context image patches for each feature dimension j, l ∈ {1, ...,m}
are denoted by a0j and aij respectively. The blocks of (C̄ + λ1I)−1 are defined
as: C̄jj = diag

(
â∗
0j � â0j + λ2

∑k
i=1 â∗

ij � âij

)
+ λ1I

C̄jl = diag
(
â∗
0j � â0l + λ2

∑k
i=1 â∗

ij � âil

)
, j 6= l

(36)

Unfortunately, this system cannot be inverted as efficiently as in the single-
channel case. However, since all of the blocks are diagonal, the system can be
decomposed into n smaller systems of dimension Rm×m. This reduces the com-
plexity significantly and allows for parallelization. Similar to Eq. (17), a separate
system is solved for each pixel p ∈ {1, ..., n} of the filter ˆ̄w.

ˆ̄w(p) =

c̄11(p) + λ1 . . . c̄1m(p)
...

. . .
...

c̄m1(p) . . . c̄mm(p) + λ1


−1  [â∗

01 � ŷ](1)
...

[â∗
0m � ŷ](1)

 (37)

Detection formula. It is almost the same as in the single-channel case in Eq.
(11) with the difference that the image patch z and the learned filter w are
m-dimensional.
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Solution in the Dual Domain. Just like in the case of single-channel features,
the multi-channel primal solution (Eq. (29)) also has the exact same form as
the solution of the standard ridge regression problem [1] yielding the following
solution in the dual domain:

ᾱ =
(
B̄B̄T + λ1I

)−1
ȳ (38)

where ᾱ ∈ Rkn

B̄B̄T =


A01 . . . A0m√
λ2A11 . . .

√
λ2A1m

...
. . .

...√
λ2Ak1 . . .

√
λ2Akm


AT

01

√
λ2A

T
11 . . .

√
λ2A

T
k1

...
...

. . .
...

AT
0m

√
λ2A

T
1m . . .

√
λ2A

T
km



=


∑m

i=1 A0iA
T
0i

√
λ2
∑m

i=1 A0iA1i
T . . .

√
λ2
∑m

i=1 A0iAki
T

√
λ2
∑m

i=1 A1iA
T
0i λ2

∑m
i=1 A1iA1i

T . . . λ2
∑m

i=1 A1iAki
T

...
...

. . .
...√

λ2
∑m

i=1 AkiA
T
0i λ2

∑m
i=1 AkiA1i

T . . . λ2
∑m

i=1 AkiA
T
ki



= F̄

 diag(
∑m

i=1 â0i � â∗
0i) . . . diag(

√
λ2
∑m

i=1 â0i � â∗
ki)

...
. . .

...
diag(

√
λ2
∑m

i=1 âki � â∗
0i) . . . diag(λ2

∑m
i=1 âki � â∗

ki)

 F̄H

= F̄D̄F̄H

(39)
Substituting into Eq. 38:

ᾱ =
[
F̄ (D̄ + λ1I) F̄H

]−1
ȳ = F̄ (D̄ + λ1I)−1 F̄H ȳ (40)

ˆ̄α = (D̄ + λ1I)−1 ˆ̄y =

diag(d̄00) . . . diag(d̄0k)
...

. . .
...

diag(d̄k0) . . . diag(d̄kk)


−1 ŷ

...
0

 (41)

where vectors d̄jl with j, l ∈ {1, ..., k} are given by:
d̄00 =

∑m
i=1 (â0i � â∗

0i) + λ1

d̄jj = λ2
∑m

i=1(âji � â∗
ji) + λ1, j 6= 0

d̄jl =
√
λ2
∑m

i=1(âji � â∗
li), j 6= l

(42)

Note that the linear system is the same as in case of the dual domain solution for
single-channel features with the exception that there is now a sum along the fea-
ture dimension m. This solution also permits the use of kernels and the linear sys-
tem can be solved in the same fashion as the single-channel case (Eq. (17)). Since
all blocks are diagonal, the system can be decomposed into n smaller systems
of dimension R(k+1)×(k+1). This significantly reduces complexity and allows for



8 Matthias Mueller, Neil Smith, and Bernard Ghanem

parallelization. Instead of solving one large system of dimension R(k+1)n×(k+1)n

to compute ˆ̄α, a separate system is solved for each pixel p ∈ {1, ..., n} of ˆ̄α, as
follows:

ˆ̄α(p) =

d̄00(p) . . . d̄0k(p)
...

. . .
...

d̄k0(p) . . . d̄kk(p)


−1 ŷ(p)

...
0

 (43)

Detection Formula. It follows the single-channel feature case with the difference
that Z̄ ∈ Rnm×n and B̄ ∈ R(k+1)n×nm now have multiple feature dimensions as
columns:

rd(ᾱ, B̄, Z̄) = Z̄ B̄T ᾱ (44)

rd =
[
Z1 . . . Zm

] AT
01

√
λ2A

T
11 . . .

√
λ2A

T
k1

...
...

. . .
...

AT
0m

√
λ2A

T
1m . . .

√
λ2A

T
km



ᾱ0

ᾱ1

...
ᾱk

 (45)

rd =
[∑m

i=1 ZiA
T
0i . . .

√
λ2
∑m

i=1 ZiAki
T
]
FH

ᾱ0

...
ᾱk

 (46)

rd = F
[∑m

i=1 diag(ẑi � â∗
0i) . . .

√
λ2
∑m

i=1 diag(ẑi � â∗
ki)
]
FH

ᾱ0

...
ᾱk

 (47)

r̂d =
[
diag (

∑m
i=1 ẑi � â∗

0i) . . .
√
λ2 diag (

∑m
i=1 ẑi � â∗

ki)
]  ˆ̄α0

...
ˆ̄αk

 (48)

r̂d =

(
m∑
i=1

ẑi � â∗
0i

)
� ˆ̄α0 +

√
λ2

k∑
j=1

(
m∑
i=1

ẑi � â∗
ji

)
� ˆ̄αj (49)

1.3 Energy of data term

||A0w − y||22 = (A0w − y)T (A0w − y)

= (A0w)T (A0w)− (A0w)Ty − yT (A0w) + (y)T (y)

= ||A0w||22 − 2(A0w)Ty + ||y||22

(50)

where A0w is the response
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2 Experiments

We also evaluate trackers with the same parameters on two additional datasets
to show that our framework improves tracking performance consistently. Figures
1a and 1b show the results on TC-128 [3] and Figures 2a and 2b show the
results on UAV-123 [4]. While the results are lower for all trackers due to the
higher difficulty of these datasets, the context-aware CF trackers consistently
outperform the corresponding baseline CF trackers by a margin. Also note that
none of the parameters was adjusted and that the sampling strategy for the
context patches is very naive. With further parameter tuning and a smarter
sampling strategy the results can be much further improved.
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(a) TC-128 - Precision Plot
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Fig. 1: Average precision and success on TC-128 for all sequences
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Fig. 2: Average precision and success on UAV-123 for all sequences

The following Figures show the performance for each attribute on OTB-100 [5].
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Fig. 3: Average precision and success on OTB-100 for videos with the attribute
Aspect Ratio Change
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Fig. 4: Average precision and success on OTB-100 for videos with the attribute
Background Clutter
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Fig. 5: Average precision and success on OTB-100 for videos with the attribute
Deformation
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Fig. 6: Average precision and success on OTB-100 for videos with the attribute
Fast Motion
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Fig. 7: Average precision and success on OTB-100 for videos with the attribute
In-Plane Rotation
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Fig. 8: Average precision and success on OTB-100 for videos with the attribute
Illumination Variation
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Fig. 9: Average precision and success on OTB-100 for videos with the attribute
Low Resolution
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Fig. 10: Average precision and success on OTB-100 for videos with the attribute
Motion Blur
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Fig. 11: Average precision and success on OTB-100 for videos with the attribute
Occlusion
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Fig. 12: Average precision and success on OTB-100 for videos with the attribute
Out-of-Plane Rotation
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Fig. 13: Average precision and success on OTB-100 for videos with the attribute
Out-of-View
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Fig. 14: Average precision and success on OTB-100 for videos with the attribute
Scale Variation
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