
Supplementary materials for:
Plug & Play Generative Networks:

Conditional Iterative Generation of Images in Latent Space

S6. Markov chain Monte Carlo methods and
derivation of MALA-approx

Assume a distribution p(x) that we wish to produce sam-
ples from. For certain distributions with amenable structure
it may be possible to write down directly an independent
and identically distributed (IID) sampler, but in general this
can be difficult. In such cases where IID samplers are not
readily available, we may instead resort to Markov Chain
Monte Carlo (MCMC) methods for sampling. Complete
discussions of this topic fill books [25, 4]. Here we briefly
review the background that led to the sampler we propose.

In cases where evaluation of p(x) is possible, we can
write down the Metropolis-Hastings (hereafter: MH) sam-
pler for p(x) [35, 18]. It requires a choice of proposal dis-
tribution q(x′|x); for simplicity we consider (and later use)
a simple Gaussian proposal distribution. Starting with an
x0 from some initial distribution, the sampler takes steps
according to a transition operator defined by the below rou-
tine, with N(0, σ2) shorthand for a sample from that Gaus-
sian proposal distribution:

1. xt+1 = xt +N(0, σ2)

2. α = p(xt+1)/p(xt)

3. if α < 1, reject sample xt+1 with probability 1−α by
setting xt+1 = xt, else keep xt+1

In theory, sufficiently many steps of this simple sampling
rule produce samples for any computable p(x), but in prac-
tice it has two problems: it mixes slowly, because steps are
small and uncorrelated in time, and it requires us to be able
to compute p(x) to calculate α, which is often not possi-
ble. A Metropolis-adjusted Langevin algorithm (hereafter:
MALA) [46, 45] addresses the first problem. This sampler
follows a slightly modified procedure:

1. xt+1 = xt + σ2/2∇ log p(xt) +N(0, σ2)

2. α = f(xt, xt+1, p(xt+1), p(xt))

3. if α < 1, reject sample xt+1 with probability 1−α by
setting xt+1 = xt, else keep xt+1

where f(·) is the slightly more complex calculation of
α, with the notable property that as the step size goes to
0, f(·) → 1. This sampler preferentially steps in the di-
rection of higher probability, which allows it to spend less
time rejecting low probability proposals, but it still requires
computation of p(x) to calculate α.

The stochastic gradient Langevin dynamics (SGLD)
method [61, 52] was proposed to sidestep this troublesome
requirement by generating probability proposals that are
based on a small subset of the data only: by using stochas-
tic gradient descent plus noise, by skipping the accept-reject
step, and by using decreasing step sizes. Inspired by SGLD,
we define an approximate sampler by assuming small step
size and doing away with the reject step (by accepting ev-
ery sample). The idea is that the stochasticity of SGD itself
introduces an implicit noise: although the resulting update
does not produce asymptotically unbiased samples, it does
if we also anneal the step size (or, equivalently, gradually
increase the minibatch size).

While an accept ratio of 1 is only approached in the limit
as the step size goes to zero, in practice we empirically ob-
serve that this approximation produces reasonable samples
even for moderate step sizes. This approximation leads to a
sampler defined by the simple update rule:

xt+1 = xt + σ2/2∇ log p(xt) +N(0, σ2) (12)

As explained below, we propose to decouple the two step
sizes for each of the above two terms after xt, with two
independent scaling factors to allow independently tuning
each (ε12 and ε3 in Eq. 13). This variant makes sense when
we consider that the stochasticity of SGD itself introduces
more noise, breaking the direct link between the amount of
noise injected and the step size under Langevin dynamics.

We note that p(x) ∝ exp(−Energy(x)), ∇ log p(xt)
is just the gradient of the energy (because the partition
function does not depend on x) and that the scaling fac-
tor (σ2/2 in the above equation) can be partially absorbed
when changing the temperature associated with energy,
since temperature is just a multiplicative scaling factor in
the energy. Changing that link between the two terms is
thus equivalent to changing temperature because the incor-
rect scale factor can be absorbed in the energy as a change

12

uses accept/
reject step and

mixes requires p(x) update rule (not including accept/reject step)
MH slowly yes xt+1 = xt +N(0, σ2)

MALA ok yes xt+1 = xt + 1/2σ∇ log p(xt) +N(0, σ2)

MALA-approx ok no xt+1 = xt + ε12∇ log p(xt) +N(0, ε23)

Table S1: Samplers properties assuming Gaussian proposal distributions. Samples are drawn via MALA-approx in this paper.

in the temperature. Since we do not control directly the
amount of noise (some of which is now produced by the
stochasticity of SGD itself), it is better to “manually” con-
trol the trade-off by introducing an extra hyperparameter.
Doing so also may help to compensate for the fact that the
SGD noise is not perfectly normal, which introduces a bias
in the Markov chain. By manually controlling both the step
size and the normal noise, we can thus find a good trade-
off between variance (or temperature level, which would
blur the distribution) and bias (which makes us sample from
a slightly different distribution). In our experience, such
decoupling has helped find better tradeoffs between sam-
ple diversity and quality, perhaps compensating for idiosyn-
crasies of sampling without a reject step. We call this sam-
pler MALA-approx:

xt+1 = xt + ε12∇ log p(xt) +N(0, ε23) (13)

Table S1 summarizes the samplers and their properties.

S7. Probabilistic interpretation of previous
models (continued)

In this paper, we consider four main representative ap-
proaches in light of the framework:

1. Activation maximization with no priors [38, 51, 11]

2. Activation maximization with a Gaussian prior [48,
64]

3. Activation maximization with hand-designed priors
[48, 64, 40, 60, 39, 38, 34]

4. Sampling in the latent space of a generator network
[2, 63, 67, 6, 37, 17]

Here we discuss the first three and refer readers to the
main text (Sec. 2.2) for the fourth approach.
Activation maximization with no priors. From Eq. 5, if
we set (ε1, ε2, ε3) = (0, 1, 0) , we obtain a sampler that fol-
lows the class gradient directly without contributions from
a p(x) term or the addition of noise. In a high-dimensional
space, this results in adversarial or fooling images [51, 38].
We can also interpret the sampling procedure in [51, 38]

as a sampler with non-zero ε1 but with a p(x) such that
∂ log p(x)

∂x = 0; in other words, a uniform p(x) where all
images are equally likely.
Activation maximization with a Gaussian prior. To com-
bat the fooling problem [38], several works have used L2

decay, which can be thought of as a simple Gaussian prior
over images [48, 64, 60]. From Eq. 5, if we define a Gaus-
sian p(x) centered at the origin (assume the mean image
has been subtracted) and set (ε1, ε2, ε3) = (λ, 1, 0), pulling
Gaussian constants into λ, we obtain the following noiseless
update rule:

xt+1 = (1− λ)xt +
∂ log p(y = yc|xt)

∂xt
(14)

The first term decays the current image slightly toward
the origin, as appropriate under a Gaussian image prior, and
the second term pulls the image toward higher probability
regions for the chosen class. Here, the second term is com-
puted as the derivative of the log of a softmax unit in the
output layer of the classification network, which is trained
to model p(y|x). If we let li be the logit outputs of a classi-
fication network, where i indexes over the classes, then the
softmax outputs are given by si = exp(li)/

∑
j exp(lj),

and the value p(y = yc|xt) is modeled by the softmax unit
sc.

Note that the second term is similar, but not identical,
to the gradient of logit term used by [48, 64, 34]. There
are three variants of computing this class gradient term: 1)
derivative of logit; 2) derivative of softmax; and 3) deriva-
tive of log of softmax. Previously mentioned papers empir-
ically reported that derivative of the logit unit li produces
better visualizations than the derivative of the softmax unit
si (Table S2a vs. b), but this observation had not been fully
justified [48]. In light of our probablistic interpretation (dis-
cussed in Sec. 2.1), we consider activation maximization as
performing noisy gradient descent to minimize the energy
function E(x, y):

E(x, y) = −log(p(x, y))
= −log(p(x)p(y|x))
= −(log(p(x)) + log(p(y|x))) (15)

To sample from the joint model p(x, y), we follow the
energy gradient:

13

a. Derivative of logit. Has worked well in practice [37, 11]
but not quite the right term to maximize under the sampler
framework set out in this paper.

∂li
∂x

b. Derivative of softmax. Previously avoided due to poor
performance [48, 64], but poor performance may have been
due to ill-conditioned optimization rather than the inclusion
of logits from other classes. In particular, the term goes to 0
as si goes zero.

∂si
∂x

= si


∂li
∂x
−
∑

j

sj
∂lj
∂x




c. Derivative of log of softmax. Correct term under the
sampler framework set out in this paper. Well-behaved under
optimization, perhaps due to the ∂li/∂x term untouched by
the si multiplier.

∂ log si
∂x

=
∂ log p(y = yi|xt)

∂x

=
∂li
∂x
− ∂

∂x
log
∑

j

exp(lj)

Table S2: A comparison of derivatives for use in activation maximization experiments. The first has most commonly been
used, the second has worked in the past but with some difficulty, but the third is correct under the sampler framework set out
in this paper. We perform experiments in this paper with the third variant.

∂E(x, y)

∂x
= −

(
∂log(p(x))

∂x
+
∂log(p(y|x))

∂x

)
(16)

which derives the class gradient term that matches that in
our framework (Eq. 14, second term). In addition, recall
that the classification network is trained to model p(y|x)
via softmax, thus the class gradient variant (the derivative of
log of softmax) is the most theoretically justifiable in light
of our interpretation. We summarize all three variants in
Table S2. In overall, we found the proposed class gradient
term a) theoretically justifiable under the probabilistic inter-
pretation, and b) working well empirically, and thus suggest
it for future activation maximization studies.
Activation maximization with hand-designed priors. In
an effort to outdo the simple Gaussian prior, many works
have proposed more creative, hand-designed image priors
such as Gaussian blur [64], total variation [34], jitter [36],
and data-driven patch priors [59]. These priors effectively
serve as a simple p(x) component. Those that cannot be ex-
plicitly expressed in the mathematical p(x) form (e.g. jitter
[36] and center-biased regularization [40]) can be written
as a general regularization function r(.) as in [64], in which
case the noiseless update becomes:

xt+1 = r(xt) +
∂ log p(y = yc|xt)

∂xt
(17)

Note that all methods considered in this section are
noiseless and therefore produce samples showing diversity

only by starting the optimization process at different initial
conditions. The effect is that samples tend to converge to a
single mode or a small number of modes [11, 40].

S8. Comparing feature matching losses

The addition of feature matching losses (i.e. the dif-
ferences between a real image and a generated image not
in pixel space, but in a feature space, such as a high-level
code in a deep neural network) to the training cost has been
shown to substantially improve the quality of samples pro-
duced by generator networks, e.g. by producing sharper and
more realistic images [9, 28, 22].

Dosovitskiy & Brox [9] used the feature matching loss
measured in the pool5 layer code space of AlexNet deep
neural network (DNN) [26] trained to classify 1000-class
ImageNet images [7]. Here, we empirically compare sev-
eral feature matching losses computed in different layers
of the AlexNet DNN. Specifically, we follow the training
procedure in Dosovitskiy & Brox [9], and train 3 generator
networks, each with a different feature matching loss com-
puted in different layers from the pretrained AlexNet DNN:
a) pool5, b) fc6 and c) both pool5 and fc6 losses. We em-
pirically found that matching the pool5 features leads to the
best image quality (Fig. S8), and chose the generator with
this loss for the main experiments in the paper.

14

(a) Real images

(b) Joint PPGN-h (Limg + Lh1 + Lh + LGAN)

(c) LGAN removed (Limg + Lh1 + Lh)

(d) Lh1 removed: Limg + Lh + LGAN

(e) Lh removed: Limg + Lh1 + LGAN

Figure S8: A comparison of images produced by different generators G, each trained with a different loss combination
(below each image). Limg , Lh1

, and Lh are L2 reconstruction losses respectively in the pixel (x), pool5 feature (h1) and fc6
feature (h) space. G is trained to map h → x, i.e. reconstructing images from fc6 features. In the Joint PPGN-h treatment
(Sec. 3.4), G is trained with a combination of 4 losses (panel b). Here, we perform an ablation study on this loss combination
to understand the effect of each loss, and find a combination that produces the best image quality. We found that removing the
GAN loss yields blurry results (panel c). The Noiseless Joint PPGN-h variant (Sec. 3.5) is trained with the loss combination
that produces the best image quality (panel e). Compared to pool5, fc6 feature matching loss often produce the worse image
quality because it is effectively encouraging generated images to match the high-level abstract statistics of real images instead
of low-level statistics [16]. Our result is in consistent with Dosovitskiy & Brox [9].

15

S9. Training details
S9.1. Common training framework

We use the Caffe framework [21] to train the networks.
All networks are trained with the Adam optimizer [23] with
momentum β1 = 0.9, β2 = 0.999, and γ = 0.5, and an ini-
tial learning rate of 0.0002 following [9]. The batch size is
64. To stabilize the GAN training, we follow heuristic rules
based on the ratio of the discriminator loss over generator
loss r = lossD/lossG and pause the training of the genera-
tor or discriminator if one of them is winning too much. In
most cases, the heuristics are a) pause training D if r < 0.1;
b) pause training G if r > 10. We did not find BatchNorm
[20] helpful in further stabilizing the training as found in
Radford et al. [43]. We have not experimented with all of
the techniques discussed in Salimans et al. [47], some of
which could further improve the results.

S9.2. Training PPGN-x

We train a DAE for images and incorporate it to the
sampling procedure as a p(x) prior to avoid fooling ex-
amples [37]. The DAE is a 4-layer convolutional network
that encodes an image to the layer conv1 of AlexNet [26]
and decodes it back to images with 3 upconvolutional lay-
ers. We add an amount of Gaussian noise ∼ N(0, σ2) with
σ = 25.6 to images during training. The network is trained
via the common training framework described in Sec. S9.1
for 25, 000 mini-batch iterations. We use L2 regularization
of 0.0004.

S9.3. Training PPGN-h

For the PPGN-h variant, we train two separate networks:
a generator G (that maps codes h to images x) and a prior
p(h). G is trained via the same procedure described in
Sec. S9.4. We model p(h) via a multi-layer perceptron DAE
with 7 hidden layers of size: 4096− 2048− 1024− 500−
1024−2048−4096. We experimented with larger networks
but found this to work the best. We sweep across different
amounts of Gaussian noiseN(0, σ2), and empirically chose
σ = 1 (i.e. ∼10% of the mean fc6 feature activation). The
network is trained via the common training framework de-
scribed in Sec. S9.1 for 100, 000 mini-batch iterations. We
use L2 regularization of 0.001.

S9.4. Training Noiseless Joint PPGN-h

Here we describe the training details of the generator net-
work G used in the main experiments in Sections 3.3, 3.5,
3.4. The training procedure follows closely the framework
by Dosovitskiy & Brox [9].

The purpose is to train a generator network G to re-
construct images from an abstract, high-level feature code
space of an encoder network E—here, the first fully con-
nected layer (fc6) of an AlexNet DNN [26] pre-trained to

perform image classification on the ImageNet dataset [7]
(Fig. S9a) We trainG as a decoder for the encoderE, which
is kept frozen. In other words, E + G form an image au-
toencoder (Fig. S9b).

Training losses. G is trained with 3 different losses as in
Dosovitskiy & Brox [9], namely, an adversarial loss LGAN ,
an image reconstruction loss Limg , and a feature matching
loss Lh1

measured in the spatial layer pool5 (Fig. S9b):

LG = Limg + Lh1
+ LGAN (18)

Limg and Lh1
are L2 reconstruction losses in their re-

spective space of images x and h1 (pool5) codes :

Limg = ||x̂− x||2 (19)

Lh1 = ||ĥ1 − h1||2 (20)

The adversarial loss for G (which intuitively maximizes
the chance D makes mistakes) follows the original GAN
paper [14]:

LGAN = −
∑

i

log(Dρ(Gθ(hi))) (21)

where xi is a training image, and hi = E(xi) is a code.
As in Goodfellow et al. [14], D tries to tell apart real and
fake images, and is trained with the adversarial loss as fol-
lows:

LD = −
∑

i

log(Dρ(xi)) + log(1−Dρ(Gθ(hi))) (22)

Architecture. G, an upconvolutional (also “deconvolu-
tional”) network [10] with 9 upconvolutional and 3 fully
connected layers. D is a regular convolutional network for
image classification with a similar architecture to AlexNet
[26] with 5 convolutional layers followed by 3 fully con-
nected layers, and 2 outputs (for “real” and “fake” classes).

The networks are trained via the common training frame-
work described in Sec. S9.1 for 106 mini-batch iterations.
We use L2 regularization of 0.0004.

Specifics of DGN-AM reproduction. Note that while
the original set of parameters in Nguyen et al. [37] (in-
cluding a small number of iterations, an L2 decay on code
h, and a step size decay) produces high-quality images, it
does not allow for a long sampling chain, traveling from
one mode to another. For comparisons with other mod-
els within our framework, we sample from DGN-AM with
(ε1, ε2, ε3) = (0, 1, 10−17), which is slightly different from
(λ, 1, 0) in Eq. 10, but produces qualitatively the same re-
sult.

16

S9.5. Training Joint PPGN-h

Via the same existing network structures from DGN-AM
[37], we train the generator G differently by treating the en-
tire model as being composed of 3 interleaved DAEs: one
for h, h1, and x respectively (see Fig. S9c). Specifically,
we add Gaussian noise to these variables during training,
and by incorporating three corresponding L2 reconstruction
losses (see Fig. S9c). Adding noise to an AE can be consid-
ered as a form of regularization that encourages an autoen-
coder to extract more useful features [57]. Thus, here, we
hypothesize that adding a small amount of noise to h1 and
x might slightly improve the result. In addition, the bene-
fits of adding noise to h and training the pair G and E as a
DAE for h are two fold: 1) it allows us to formally estimate
the quantity ∂logp(h)/∂h (see Eq. 6) following a previous
mathematical justification from Alain & Bengio [1]; 2) it
allows us to sample with a larger noise level, which might
improve the mixing speed.

We add noise to h during training, and train G with a L2

reconstruction loss for h:

Lh = ||ĥ− h||2 (23)

Thus, generator network G is trained with 4 losses in
total:

LG = Limg + Lh + Lh1 + LGAN (24)

Three losses Limg , Lh1 , and LGAN remain the same as
in the training of Noiseless Joint PPGN-h (Sec. S9.4). Net-
work architectures and other common training details re-
main the same as described in Sec. S9.4.

The amount of Gaussian noise N(0, σ2) added to the
3 different variables x, h1, and h are respectively σ =
{1, 4, 1} which are ∼1% of the mean pixel values and
∼10% of the mean activations respectively in pool5 and
fc6 space computed from the training set. We experimented
with larger noise levels, but were not able to train the model
successfully as large amounts of noise resulted in training
instability. We also tried training without noise for x, i.e.
treating the model as being composed of 2 DAEs instead of
3, but did not obtain qualitatively better results.

Note that while we did not experiment in this paper,
jointly training both the generator G and the encoder E
via their respective maximum likelihood training algorithms
is possible. Also, Xie et al. [62] has proposed a training
regime that alternatively updates these two networks. That
cooperative training scheme indeeds yields a generator that
synthesizes impressive results for multiple image datasets
[62].

S10. Inpainting
We first randomly mask out a 100 × 100 patch of a real

227 × 227 image xreal (Fig. 7a). The patch size is chosen

following Pathak et al. [42]. We perform the same update
rule as in Eq. 11 (conditioning on a class, e.g. “volcano”),
but with an additional step updating image x during the for-
ward pass:

x =M � x+ (1−M)� xreal (25)

where M is the binary mask for the corrupted patch,
(1−M)� xreal is the uncorrupted area of the real image,
and � denotes the Hadamard (elementwise) product. In-
tuitively, we clamp the observed parts of the synthesized
image and then sample only the unobserved portion in each
pass. The DAE p(h) model and the image classification
network p(y|h) model see progressively refined versions of
the final, filled in image. This approach tends to fill in se-
mantically correct content, but it often fails to match the
local details of the surrounding context (Fig. 7b, the pre-
dicted pixels often do not transition smoothly to the sur-
rounding context). An explanation is that we are sampling
in the fully-connected fc6 feature space, which mostly en-
codes information of the global structure of objects instead
of local details [64].

To encourage the synthesized image to match the context
of the real image, we can add an extra condition in pixel
space in the form of an additional term to the update rule
in Eq. 5 to update h in the direction of minimizing the cost:
||(1−M)�xreal− (1−M)�x||22. This helps the filled-in
pixels match the surrounding context better (Fig. 7 b vs. c).
Compared to the Context-Aware Fill feature in Photoshop
CS6, which is based on the PatchMatch technique [3], our
method often performs worse in matching the local features
of the surrounding context, but can fill in semantic objects
better in many cases (Fig. 7, bird & bell pepper). More
inpainting results are provided in the Fig. S24.

S11. PPGN-x: DAE model of p(x)

We investigate the effectiveness of using a DAE to model
p(x) directly (Fig. 3a). This DAE is a 4-layer convolutional
network trained on unlabeled images from ImageNet. We
sweep across different noise amounts for training the DAE
and empirically find that a noise level of 20% of the pixel
value range, corresponding to ε3 = 25.6, produces the best
results. Full training and architecture details are provided in
Sec. S9.2.

We sample from this chain following Eq. 7 with
(ε1, ε2, ε3) = (1, 105, 25.6)5 and show samples in
Figs. S13a & S14a. PPGN-x exhibits two expected prob-
lems: first, it models the data distribution poorly, evidenced
by the images becoming blurry over time. Second, the chain
mixes slowly, changing only slightly in hundreds of steps.

5 The ε1 and ε3 correspond to the noise level used while training the
DAE, and the ε2 value is chosen manually to produce the best samples.

17

𝑥"ℎ$𝑥

ℎ$%

𝑥

B1E1

ℎ$

D

𝐿'()

“fake”

D

“real”“real”
𝐿*+,

E1 E2 G

E1

ℎ

𝐿-.

GAN for 𝑥
Auto-­‐encoder for 𝑥

+	
 noise +	
 noise 𝑥"ℎ$𝑥

ℎ$%

𝑥

B1E1

ℎ$

D

𝐿'()

“fake”

D

“real”“real”
𝐿*+,

E1 E2 G

E1

Denoising	
 auto-­‐encoder for	
 ℎ

B1E2E2

ℎ/ ℎ
𝐿-

Denoising	
 auto-­‐encoder for	
 ℎ$

+	
 noiseℎ

𝐿-.

GAN for 𝑥
Denoising	
 auto-­‐encoder for 𝑥

(b)	
 Noiseless	
 joint	
 PPGN-­‐h (c)	
 Joint	
 PPGN-­‐h

Auto-­‐encoder for	
 ℎ$

1000
labels

Pre-­‐trained	
 convnet for	
 image	
 classification

pool5

ℎ$𝑥 E1 E2 ℎ

fc6image

(a)	
 Encoder	
 network	
 E

Figure S9: In this paper, we propose a class of models called PPGNs that are composed of 1) a generator network G that is
trained to draw a wide range of image types, and 2) a replaceable “condition” network C that tells G what to draw (Fig. 3).
Panel (b) and (c) show the components involved in the training of the generator network G for two main PPGN variants
experimented in this paper. Only shaded components (G and D) are being trained while others are kept frozen. b) For
the Noiseless Joint PPGN-h variant (Sec. 3.5), we train a generator G to reconstruct images x from compressed features h
produced by a pre-trained encoder network E. Specifically, h and h1 are, respectively, features extracted at layer fc6 and
pool5 of AlexNet [26] trained to classify ImageNet images (a). G is trained with 3 losses: an image reconstruction loss
Limg , a feature matching loss [9] Lh1 and an adversarial loss [14] LGAN . As in Goodfellow et al. [14], D is trained to tell
apart real and fake images. This PPGN variant produces the best image quality and thus used for the main experiments in
this paper (Sec. 4). After G is trained, we sample from this model following an iterative sampling procedure described in
Sec. 3.5. c) For the Joint PPGN-h variant (Sec. 3.4), we train the entire model as being composed of 3 interleaved DAEs
respectively for x, h1 and h. In other words, we add noise to each of these variables and train the corresponding AE with a
L2 reconstruction loss. The loss for D remains the same as in (a), while the loss for G is now composed of 4 components:
L = Limg + Lh1 + Lh + LGAN . The sampling procedure for this PPGN variant is provided in Sec. 3.4. See Sec. S9 for
more training and architecture details of the two PPGN variants.

Note that, instead of training the above DAE, one can
also form an x-DAE by combining a pair of separately
trained encoder E and a generator G into a composition
E(G(.)). We also experiment with this model and call
it Joint PPGN-x. The details of network E and G and
how they can be combined are described in Sec. 3.4 (Joint
PPGN-h). For sampling, we sample in the image space,
similarly to the PPGN-x in this section. We found that Joint
PPGN-x model performs better than PPGN-x, but worse
than Joint PPGN-h (data not shown).

S12. Why PPGNs produce high-quality images

One practical question is why Joint PPGN-h produces
high-quality images at a high resolution for 1000-class Im-
ageNet more successfully than other existing latent variable
models [41, 47, 43]. We can consider this question from
two perspectives.

First, from the perspective of the training loss, G is
trained with the combination of three losses (Fig. S9b),
which may be a beneficial approach to model p(x). The
GAN [14] loss, which is the gradient of log(1 − D(x)),
that is used to train G pushes each reconstruction G(h) to-
ward a mode of real images pdata(x) and away from the cur-
rent reconstruction distribution. This can be seen by noting

18

that the Bayes optimal D is pdata(x)/(pdata(x) + pmodel(x))
[14]. Since x ∼ G(h) is already near a mode of pmodel(x),
the net effect is to push G(h) towards one of the modes
of pdata, thus making the reconstructions sharper and more
plausible. If one uses only the GAN objective and no re-
construction objectives (L2 losses in the pixel or feature
space),Gmay bring the sample far from the original x, pos-
sibly collapsing several modes of x into fewer modes. This
is the typical, known “missing-mode” behavior of GANs
[47, 14] that arises in part because GANs minimize the
Jensen-Shannon divergence rather than Kullback-Leibler
divergence between pdata and pmodel, leading to an over-
memorization of modes [53]. The reconstruction losses are
important to combat this missing mode problem and may
also serve to enable better convergence of the feature space
autoencoder to the distribution it models, which is neces-
sary in order to make the h-space reconstruction properly
estimate ∂ log p(h)/∂h [1].

Second, from the perspective of the learned h→ x map-
ping, we train the G parameters of the E + G pair of net-
works as an x-AE, mapping x → h → x (see Fig. S9b).
In this configuration, as in VAEs [24] and regular DAEs
[57], the one-to-one mapping helps prevent the typical la-
tent → input missing mode collapse that occurs in GANs,
where some input images are not representable using any
code [14, 47]. However, unlike in VAEs and DAEs, where
the latent distribution is learned in a purely unsupervised
manner, we leverage the labeled ImageNet data to train E
in a supervised manner that yields a distribution of features
h that we hypothesize to be semantically meaningful and
useful for building a generative image model. To further
understand the effectiveness of using deep, supervised fea-
tures, it might be interesting future work to train PPGNs
with other feature distributions h such as random features
or shallow features (e.g. produced by PCA).

19

Model Image size Inception accuracy Inception score MS-SSIM Percent of classes
Real ImageNet images 256× 256 76.1% 210.4 ± 4.6 0.10 ± 0.06 999 / 1000
AC-GAN [41] 128× 128 10.1% N/A N/A 847 / 1000
PPGN 256× 256 59.6% 60.6 ± 1.6 0.23 ± 0.11 829 / 1000
PPGN samples resized to 128× 128 128× 128 54.8% 47.7 ± 1.0 0.25 ± 0.11 770 / 1000

Table S3: A comparison between real ImageNet validation set images, AC-GAN [41] samples, PPGN samples and their
resized 128×128 versions. Following the literature, we report Inception scores [47] (higher is better) and Inception accuracies
[41] (higher is better) to evaluate sample quality, and MS-SSIM score [41] (lower is better), which measures sample diversity
within each class. As in Odena et al. [41], the last column (“Percent of classes”, higher is better) shows the number of
classes that are more diverse (by MS-SSIM metric) than the least diverse class in ImageNet. Overall, PPGN samples are
of substantially higher quality quality than AC-GAN samples (by Inception accuracy, i.e. PPGN samples are far more
recognizable by the Google Inception network [50] than AC-GAN samples). Their diversity scores are similar (last column,
847/1000 vs. 829/1000). However, by all 4 metrics, PPGN samples have substantially lower diversity and quality than real
images. This result aligns with our qualitative observations in Figs. S25 & S10.
Row 2: Note that we chose to compare with AC-GAN [41] because, this model is also class-conditional and, to the best of
our knowledge, it produces the previous highest resolution ImageNet images (128× 128) in the literature.
Row 3: For comparison with ImageNet 256 × 256 images, the spatial dimension of the samples from the generator G is
256× 256 and we did not crop it to 227× 227 as done in other experiments in the paper.
Row 4: Although imperfect, we resized PPGN 256×256 samples down to 128×128 (last row) for comparison with AC-GAN.

20

(a) Real: top 9 (b) DGN-AM [37] (c) Real: random 9 (d) PPGN (this)

Figure S10: (a) The 9 training set images that most highly activate a given class output neuron (e.g. fire engine). (b) DGN-
AM [37] synthesizes high-quality images, but they often converge to the mode of high-activating images (the top-9 mode).
(c) 9 training set images randomly picked from the same class. (d) Our new method PPGN produces samples with better
quality and substantially larger diversity than DGN-AM, thus better representing the diversity of images from the class.

21

(a) Samples produced by PPGN visualized in a grid t-SNE [56]
.

(b) Samples hand-picked from (a) to showcase the diversity and quality of images produced by PPGN.

Figure S11: We qualitatively evaluate sample diversity by running 10 sampling chains (conditioned on class “volcano”), each
for 200 steps, to produce 2000 samples, and filtering out samples with class probability of less than 0.97. From the remaining,
we randomly pick 400 samples and plot them in a grid t-SNE [56] (top panel). From those, we chose a selection to highlight
the quality and diversity of the samples (bottom panel). There is a tremendous amount of detail in each image and diversity
across images. Samples include dormant volcanos and active volcanoes with smoke plumes of different colors from white to
black to fiery orange. Some have two peaks and others one, and underneath are scree, green forests, or glaciers (complete
with crevasses). The sky changes from different shades of mid-day blue through different sunsets to pitch black night.

22

(a) Samples produced by PPGN visualized in a grid t-SNE [56]
.

(b) Samples hand-picked from (a) to showcase the diversity and quality of images produced by PPGN.

Figure S12: The figures are selected and plotted in the same way as Fig. S11, but here for the “pool table” class. Once again,
we observe a high degree of both image quality and diversity. Different felt colors (green, blue, and red), lighting conditions,
camera angles, and interior designs are apparent.

23

(a) PPGN-x with a DAE model of p(x)

(b) DGN-AM [37] (which has a hand-designed Gaussian p(h) prior)

(c) PPGN-h: Generator and multi-layer perceptron DAE model of p(h)

(d) Joint PPGN-h: joint Generator and DAE

(e) Noiseless Joint PPGN-h: joint Generator and AE

Figure S13: A comparison of samples generated from a single sampling chain (starting from a real image on the left) across
different models. Each panel shows two sampling chains for that model: one conditioned on the “planetarium” class and
the other conditioned on the “kite” (a type of bird) class. The iteration number of the sampling chain is shown on top. (a)
The sampling chain in the image space mixes poorly. (b) The sampling chain from DGN-AM [37] (in the h code space with
a hand-designed Gaussian p(h) prior) produces better images, but still mixes poorly, as evidenced by similar samples over
many iterations. (c) To improve sampling, we tried swapping in a p(h) model represented by a 7-layer DAE for h. However,
the sampling chain does not mix faster or produce better samples. (d) We experimented with a better way to model p(h), i.e.
modeling h via x. We treat the generator G and encoder E as an autoencoder for h and call this treatment “Noiseless Joint
PPGN-h” (see Sec. 3.5). This is also our best model that we use for experiments in Sec. 4. This substantially improves the
mixing speed and sample quality. (e) We train the entire model as being composed of 3 DAEs and sample from it by adding
noise to the image, fc6 and pool5 variables. The chain mixes slightly faster compared to (d), but generates slightly worse
samples.

24

(a) PPGN-x with a DAE model of p(x)

(b) DGN-AM [37] (which has a hand-designed Gaussian p(h) prior)

(c) PPGN-h: Generator and a multi-layer perceptron DAE model of p(h)

(d) Joint PPGN-h: joint Generator and DAE

(e) Noiseless Joint PPGN-h: joint Generator and AE

Figure S14: Same as Fig. S13, but starting from a random code h (which when pushed through generator networkG produces
the leftmost images) except for (a) which starts from random images as the sampling operates directly in the pixel space. All
of our qualitative conclusions are the same as for Fig. S13. Note that the samples in (b) appear slightly worse than the images
reported in Nguyen et al. [37]. The reason is that in the new framework introduced in this paper we perform an infinitely long
sampling chain at a constant learning rate to travel from one mode to another in the space. In contrast, the set of parameters
(including the number of iterations, an L2 decay on code h, and a learning rate decay) in Nguyen et al. [37] is carefully tuned
for the best image quality, but does not allow for a long sampling chain (Fig. 2).

25

(a) Very large noise (ε3 = 10−1)

(b) Large noise (ε3 = 10−5)

(c) Medium noise (ε3 = 10−9)

(d) Small noise (ε3 = 10−13)

(e) Infinitesimal noise (ε3 = 10−17)

Figure S15: Sampling chains with the noiseless PPGN model starting from the code of a real image (left) and conditioning
on class “planetarium” i.e. (ε1, ε2) = (1, 10−5) for different noise levels ε3. The sampling step numbers are shown on top.
Samples are better with a tiny amount of noise (e) than with larger noise levels (a,b,c & d), so we chose that as our default
noise level for all sampling experiments with the Noiseless Joint PPGN-h variant (Sec. 3.5). These results suggest that a
certain amount of noise added to the DAE during training might help the chain mix faster, and thus partly motivated our
experiment in Sec. 3.4.

26

Figure S16: The default generator network G in our experiments (used in Sections 3.3 & 3.5) was trained to reconstruct im-
ages from compressed fc6 features extracted from AlexNet classification network [26] with three different losses: adversarial
loss [14], feature matching loss [9], and image reconstruction loss (more training details are in Sec. S9.4). Here, we test how
robust G is to Gaussian noise added to an input code h of a real image. We sweep across different levels of Gaussian noise
N(0, σ2) with σ = {1%, 10%, 20%, 30%, 40%} of the mean fc6 activation computed by the activations of validation set
images. We observed that G is robust to even a large amount of noise up to σ = 20% despite being trained without explicit
regularizations (i.e. with noise [57] or a contractive penalty [44]).

27

(a) Samples produced by the DGN-AM method [37]

(b) Samples produced by PPGN (the new model proposed in this paper)

Figure S17: A comparison of images produced by the DGN-AM method [37] (top) and the new PPGN method we introduce
in this paper (bottom). Both methods synthesize images conditioned on classes of scene images that the generator was never
trained on. Specifically, the condition model p(y|x) is AlexNet trained to classify 205 categories of scene images from the
MIT Places dataset [65], while the prior model p(x) is trained to generate ImageNet images. Despite having a strong, learned
prior (represented by a DAE trained on ImageNet images), the PPGN (like DGN-AM) produces high-quality images for an
unseen dataset.

28

Figure S18: The model can be given a text description of an image and asked to generate the described image. Technically,
that involves the same PPGN model, but conditioning on a caption instead of a class. Here the condition network is the LRCN
image captioning model from Donahue et al. [8], which can generate reasonable captions for images. For each caption, we
show 4 images synthesized by starting from random initializations. Note that it reasonably draws “tarmac”, “silhouette” or
“woman” although these are not categories in the ImageNet dataset [7].

29

Figure S19: PPGNs have the ability to perform ‘multifaceted feature visualization,’ meaning they can generate the set of
inputs that activate a given hidden neuron, which improves our ability to understand what type of features that neuron has
learned to detect [40, 64]. To demonstrate that capability, instead of conditioning on a class from the dataset, here we generate
images conditioned on a hidden neuron previously identified as detecting text [64]: neuron number 243 in layer conv5 of the
AlexNet DNN. We run 10 sampling chains, each for 200 steps, to produce 2000 samples, and filtering out samples with a
softmax probability (taken over all depth columns at the same spatial location) of less than 0.97. From the remaining, we
randomly pick 400 samples and plot them in a grid t-SNE [56]. These images can be interpreted as the preferred stimuli for
this text detector unit [37]. The diversity of samples is substantially improved vs. previous methods [40, 37, 64] uncovering
different facets that the neuron has learned to detect. In other words, while previous methods produced one type of sample
per neuron [64, 37], or lower quality samples with greater diversity [40], PPGNs produce a diversity of high-quality samples,
and thus represent the state of the art in multifaceted feature visualization.

30

Figure S20: This figure shows the same thing as Fig. S19, except in this case for a hidden neuron previously identified to be
a face detector [64] neuron (number 196) in layer conv5 of the AlexNet DNN. One can see different types of faces that the
neuron has learned to detect, including everything from dog faces (top row) to masks (left columns), and human faces from
different angles, against different backgrounds, with and without hats, and with different shirt colors. Interestingly, we see
that certain types of houses with windows that resemble eye sockets also activate this neuron (center left). This demonstrates
the value of PPGNs as tools to identify unexpected facets, which aids in understanding the network, predicting some failure
cases, and providing hints for how the network may be improved.

31

(a) Snail

(b) Studio couch

(c) Harvester

(d) Pomegranate

(e) Tape player

Figure S21: To evaluate the diversity of images within a class, here we show randomly chosen images from 5 different classes
(a class label shown below each panel). Each image is the last sample produced from a 200-iteration sampling chain starting
from a random initialization. The PPGN model is described in Sec. 3.5. We chose this method because it is simple, intuitive
and straightforward to interpret and compare to other image generative models that do not require MCMC sampling. Another
method to produce samples is to run a long sampling chain and record images that are produced at every sampling step;
however, as done in Fig. S11, that method would require additional processing (including heuristic filtering and clustering)
to obtain a set of different images because a well-known issue with MCMC sampling is that mixing is slow i.e. subsequent
samples are often correlated. Note that one could obtain a larger diversity by running each sampling chain with a different
set of parameters (ε multipliers in Eq. 5); however, here we use the same set of parameters as previously reported in Sec. 3.5
for simplicity and reproducibility.

32

Figure S22: For a fair evaluation of the image quality produced by PPGN, here we show one randomly chosen sample
for each of 120 random ImageNet classes (neither cherry-picked). Each image shown is the last sample produced from a
200-iteration sampling chain starting from a random initialization. The PPGN model is described in Sec. 3.5.

33

(a) ε1 = 10−1

(b) ε1 = 10−3

(c) ε1 = 10−5 (Noiseless Joint PPGN-h)

(d) ε1 = 10−7

(e) ε1 = 10−11

(f) ε1 = 0 (no contribution from the prior)

Figure S23: To evaluate the effect of the prior term ε1 in the sampling, here we sweep across different values of this multiplier.
We sample from the Noiseless Joint PPGN-h model (Sec. 3.5) starting from the code of a real image (left) and conditioning
on class “planetarium” with a fixed amount of noise i.e. (ε2, ε3) = (1, 10−17) for different ε1 values. The sampling step
numbers are shown on top. Without the learned prior p(h) (f), we arrive at the DGN-AM treatment results where the chain
does not mix at all (the same result as in Fig. S13b). Increasing ε1 up to a small value (c-e) results in a chain that mixes faster,
from one planetarium to another. When the contribution of the prior is too high which overwrites the class gradients, yielding
a chain that mixes from one mode of generic images to another (a). We empirically chose ε1 = 10−5 as the default value for
the Noiseless Joint PPGN-h experiments in this paper as it produces the best image quality and diversity for many classes.

34

Figure S24: To test the ability of PPGNs to perform “inpainting”, we randomly mask out a 100× 100 patch in a real image,
and perform class-conditional image sampling via PPGN-context (described in Sec. 4.2) to fill in missing pixels. In addition
to conditioning on a specific class (here, “volcano”, “junco” and “bell pepper” respectively), we put an additional constraint
on the code h that it has to produce an image that matches the context region. PPGN-context performs semantically well in
many cases. However, sometimes it does not match the local features of the surrounding regions. The result shows that the
class-conditional image model does understand the semantics of images.

35

(a) 60 training set images randomly taken from the “volcano” class.
.

(b) 60 PPGN samples randomly selected from 2000 samples, which are produced from 10 200-step sampling chains.

Figure S25: To evaluate how well PPGN samples represent the training set images, we compare 60 real images (top) vs. 60
PPGN generated images (bottom). All images are randomly selected. While the set of generated images are high-quality,
they have a much lower diversity compared to the set of real images. This observation aligns with our quantitative measure
in Table S3. 36

