
Truncated Max-of-Convex Models

Technical Report

Pankaj Pansari
University of Oxford

The Alan Turing Institute
pankaj@robots.ox.ac.uk

M. Pawan Kumar
University of Oxford

The Alan Turing Institute
pawan@robots.ox.ac.uk

Abstract

Truncated convex models (TCM) are a special case of pairwise random fields that have
been widely used in computer vision. However, by restricting the order of the potentials to be
at most two, they fail to capture useful image statistics. We propose a natural generalization
of TCM to high-order random fields, which we call truncated max-of-convex models (TMCM).
The energy function of TMCM consists of two types of potentials: (i) unary potential, which
has no restriction on its form; and (ii) clique potential, which is the sum of the 𝑚 largest
truncated convex distances over all label pairs in a clique. The use of a convex distance
function encourages smoothness, while truncation allows for discontinuities in the labeling.
By using 𝑚 > 1, TMCM provides robustness towards errors in the definition of the cliques.
In order to minimize the energy function of a TMCM over all possible labelings, we design
an efficient 𝑠𝑡-mincut based range expansion algorithm. We prove the accuracy of our
algorithm by establishing strong multiplicative bounds for several special cases of interest.
Using standard real data sets, we demonstrate the benefit of our high-order TMCM over
pairwise TCM, as well as the benefit of our range expansion algorithm over other 𝑠𝑡-mincut
based approaches.

1 Introduction

Truncated convex models (TCM) are a special case of pairwise random fields that have been
widely used for low-level vision applications. A TCM is defined over a set of random variables,
each of which can be assigned a value from a finite, discrete and ordered label set. In addition,
a TCM also specifies a neighborhood relationship over the random variables. An assignment of
values to all the variables is referred to as a labeling. In order to quantitatively distinguish the
labelings, a TCM specifies an energy function that consists of unary and pairwise potentials.

Given an input, the output is obtained by minimizing the energy function of a TCM over all
possible labelings. While this is an NP-hard problem, several approximate algorithms have been
proposed in the literature [3, 4, 12, 17, 20, 21, 24, 27, 30], which provide accurate solutions in
practice [28].

Since we cannot reasonably expect to improve the optimization of TCM, any failure cases
must be addressed by modifying the model itself to better capture image statistics. To this end,
we propose to address one of the main deficiencies of TCM, namely, the restriction to potentials
of order at most two. Specifically, we propose a natural generalization of TCM to high-order
random fields, which we refer to as truncated max-of-convex models (TMCM). Similar to TCM,
our model places no restrictions on the unary potentials. Furthermore, unlike TCM, it allows

1

(a) Truncated convex model

(b) Truncated max-of-convex model

Figure 1: TMCM as generalization of TCM. In (a), given an image, TCM considers pairwise 4-neighborhood
relationships and uses truncated convex distance function for pairwise potential. In (b), TMCM considers super-
pixels as cliques. The clique potential for 𝑚 =2 is the sum of the first and second maximum over all the pairwise
truncated convex distances such that no variable is used more than once.

us to define clique potentials over an arbitrary number of random variables. The value of the
clique potential is proportional to the sum of the 𝑚 largest truncated convex distances computed
over disjoint pairs of random variables in the clique. Here, disjoint pairs imply that the label
of no random variable is used more than once to compute the value of the clique potential.
Figure 1 demonstrates how TMCM differs from TCM. The exact mathematical form of the
TMCM energy function will be presented in section 4. The term 𝑚 is a positive integer that
is less than or equal to half the number of variables in the smallest clique. Importantly, the
constant of proportionality for each clique potential can depend on the input corresponding to
all the random variables in the clique. This can help capture more interesting image statistics,
which in turn can lead to a more desirable output. For example, in image denoising, the clique
weights can depend on the variance of intensity over a superpixel (group of pixels with similar
semantic and perceptual characteristics).

In order to enable the use of TMCMs in practice, we require an efficient and accurate energy
minimization algorithm that can compute the output for a given input. To this end, we extend
the range expansion algorithm for TCM to deal with arbitrary sized clique potentials. Our
algorithm retains the desirable property of iteratively solving an 𝑠𝑡-mincut problem over an
appropriate directed graph (where the number of vertices and arcs grows linearly with the number
of random variables and cliques, and quadratically with the number of labels). As the 𝑠𝑡-
mincut problem lends itself to several fast algorithms [2], this makes our overall approach
computationally efficient. Furthermore, we provide strong theoretical guarantees on the quality of
the solution for several special cases of interest, which establishes its accuracy. Our multiplicative
bounds are better than the baselines for cases where comparison is possible. Using standard real
data sets, we show the benefit of high-order TMCM over pairwise TCM, as well as the advantage
of our range expansion algorithm over other 𝑠𝑡-mincut based approaches.

2 Related Work

Pairwise TCM offer a natural framework to capture low-level cues for vision problems such
as image denoising, stereo correspondence, segmentation and optical flow [28]. However, the
restriction to pairwise potentials limits their representational power.

2

For the past few years, there has been a growing interest in high-order models. Though other
inference algorithms such as message passing are possible [9, 19, 22, 26, 29, 31], in this work our
focus is on models that admit efficient 𝑠𝑡-mincut based solutions and provide strong theoretical
guarantees on the quality of the solution. One early work was the 𝑃𝑛 Potts model [15], which
encourages label consistency over a set of random variables. This work was extended in [16],
which introduced robustness in the 𝑃𝑛 Potts model by taking into account the number of random
variables that disagreed with the majority label of a clique. Both the 𝑃𝑛 Potts model and its
robust version lend themselves to efficient optimization via the expansion algorithm [3], which
solves one 𝑠𝑡-mincut problem at each iteration. The expansion algorithm provides multiplicative
bounds [11], which measure the quality of the estimated labeling with respect to the optimal
one. Our work generalizes both the models, as well as the corresponding expansion algorithm.
Specifically, when the truncation factor of our models is set to 1, we recover the robust 𝑃𝑛 model.
Furthermore, a suitable setting of the range expansion algorithm (setting the interval length to
1) recovers the expansion algorithm.

Jegelka and Bilmes [14] introduced a nonsubmodular high-order model which is based on edge
cooperation and is optimizable using 𝑠𝑡-mincut, but the algorithm has weak approximation
bounds. Delong et al. [6, 7] proposed a clique potential based on label costs that can also
be handled via the expansion algorithm. However, unlike the robust 𝑃𝑛 Potts model, their
model provides additive bounds that are not invariant to reparameterizations of the energy
function. This theoretical limitation is addressed by the recent work of Dokania and Kumar [8] on
parsimonious labeling. Here, the clique potentials are defined as being proportional to a diversity
function of the set of unique labels present in the clique labeling. Our work can be thought of
as being complementary to parsimonious labeling. Specifically, while parsimonious labeling is
an extension of pairwise metric labeling to high-order models, our work is an extension of TCM.
The only metric that also results in a TCM is the truncated linear distance. As our experiments
will demonstrate, our specialized range expansion algorithm provides significantly better results
for truncated max-of-linear models compared to the hierarchical 𝑠𝑡-mincut approach of [8].

We note that there have been several works that deal with more general high-order potentials
and design 𝑠𝑡-mincut style solutions for them. For example, Fix et al. [10] use the submodular
max-flow algorithm [18], while Arora et al. [1] use generic cuts. However, the resulting algorithms
are exponential in the size of the cliques, which prevents their use in applications that require very
high-order cliques (with hundreds or even thousands of random variables). A notable exception
to this is the work of Ladicky et al. [25], who proposed a co-occurrence based clique potential
whose only requirement is that it should increase monotonically with the set of unique labels
present in the clique labeling. However, the use of such a general clique potential still results in
an inaccurate energy minimization algorithm, as will be seen in our experimental comparison.

3 Truncated Convex Models

A TCM is a random field defined by a set of discrete random variables X = {𝑋𝑎, 𝑎 ∈ 𝒱}, and a
neighborhood relationship ℰ over them (that is, 𝑋𝑎 and 𝑋𝑏 are neighboring random variables if
(𝑎, 𝑏) ∈ ℰ). Each random variable can take a value from a finite label set L, which is assumed to
be ordered to enable the use of convex distance functions. Without loss of generality, we define
𝒱 = {1, 2, · · · , 𝑛} and L = {1, 2, · · · , ℎ}.

An assignment of values to all the random variables x ∈ L𝑛 is referred to as a labeling.
To quantitatively distinguish the ℎ𝑛 possible labelings, a TCM defines an energy function that
consists of two types of potentials. First, the unary potential 𝜃𝑎(𝑥𝑎) that depends on the label
𝑥𝑎 of one random variable 𝑋𝑎. Second, the pairwise potential 𝜃𝑎𝑏(𝑥𝑎, 𝑥𝑏) that depends on the

3

labels 𝑥𝑎 and 𝑥𝑏 of a pair of neighboring random variables (𝑋𝑎, 𝑋𝑏). There are no restrictions on
the form of the unary potentials. However, the pairwise potentials are defined using a truncated
convex distance function over the label set.

To provide a formal specification of the pairwise potentials, we require some definitions. We
denote a convex distance function by 𝑑 : Z → R (where Z is the set of integers and R is the set of
real numbers). Recall that a convex distance function satisfies the following properties: (i) 𝑑(𝑦) ≥
0 for all 𝑦 ∈ Z and 𝑑(0) = 0; (ii) 𝑑(𝑦) = 𝑑(−𝑦) for all 𝑦 ∈ Z; and (iii) 𝑑(𝑦+1)−2𝑑(𝑦)+𝑑(𝑦−1) ≥ 0
for all 𝑦 ∈ Z. Note that the above properties also imply that 𝑑(𝑦) ≥ 𝑑(𝑧) if |𝑦| ≥ |𝑧|, for all
𝑦, 𝑧 ∈ Z. Examples of convex distance functions include the linear (that is, 𝑑(𝑦) = |𝑦|) and the
quadratic distance function (that is, 𝑑(𝑦) = 𝑦2) distance.

Given two labels 𝑙𝑖, 𝑙𝑗 ∈ L, we use a convex function 𝑑(·) to measure the distance between them
as 𝑑(𝑙𝑖−𝑙𝑗), thereby encouraging smooth labelings. In order to prevent the overpenalization of the
discontinuities in an image, it is common practice to truncate the convex distance function [3, 23,
30]. Formally, a truncated convex function is defined as min{𝑑(·),𝑀}, where 𝑀 is the truncation
factor. We now define the pairwise potential as 𝜃𝑎𝑏(𝑥𝑎, 𝑥𝑏) = 𝜔𝑎𝑏 min{𝑑(𝑥𝑎−𝑥𝑏),𝑀}, where 𝜔𝑎𝑏

is a (data-dependent) non-negative constant of proportionality.
Hence, a TCM specifies an energy function 𝐸(·) over the labelings x ∈ L𝑛 as follows:

𝐸(x) =
∑︁
𝑎∈𝒱

𝜃𝑎(𝑥𝑎) +
∑︁

(𝑎,𝑏)∈ℰ

𝜔𝑎𝑏 min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀}. (1)

The unary potentials are arbitrary, the edge weights 𝜔𝑎𝑏 are non-negative, 𝑑(·) is a convex
function and 𝑀 ≥ 0 is the truncation factor. Given an input (which provides the values of the
unary potentials and the edge weights), the desired output is obtained by solving the following
optimization problem: minx∈L𝑛 𝐸(x). While this optimization problem is NP-hard, we can
obtain an accurate approximate solution by using the efficient range expansion algorithm [23], as
well as several other approaches based on 𝑠𝑡-mincut [3, 12, 21, 30] and linear programming [4,
17, 20].

4 Truncated Max-of-Convex Models

We now present a natural generalization of TCM to high-order random fields, which define
potentials over random variables that form a clique (where all the random variables in a clique
are neighbors of each other). Importantly, we do not place any restriction on the size of the
clique.

Truncated Max-of-Convex Potentials. Consider a high-order clique consisting of the ran-
dom variables Xc = {𝑋𝑎, 𝑎 ∈ c ⊆ 𝒱}. We denote a labeling of the clique as xc ∈ L𝑐,
where we have used the shorthand 𝑐 = |c| to denote the size of the clique. In order to
specify the value of the clique potential for the labeling xc we require a sorted list of the
(not necessarily unique) labels present in xc. We denote this sorted list by p(xc) and ac-
cess its 𝑖-th element as 𝑝𝑖(xc). For example, consider a clique consisting of random variables
Xc = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6}. If the number of labels is ℎ = 10, then one of the putative
labelings of the clique is xc = {3, 2, 1, 4, 1, 3} (that is, 𝑋1 takes the value 3, 𝑋2 takes the value
2 and so on). For this labeling, p(xc) = {1, 1, 2, 3, 3, 4}. The value of 𝑝1(xc) and 𝑝2(xc) is 1,
the value of 𝑝3(xc) is 2 and so on. Given a convex function 𝑑(·), a truncation factor 𝑀 and an
integer 𝑚 ∈ [0, ⌊𝑐/2⌋], the clique potential 𝜃c(·) is defined as

𝜃c(xc) = 𝜔c

𝑚∑︁
𝑖=1

min{𝑑(𝑝𝑖(xc)− 𝑝𝑐−𝑖+1(xc)),𝑀}. (2)

4

Here, 𝜔c ≥ 0 is the clique weight that does not depend on the labeling. However, it can be chosen
based on the observed data - for instance, we may want to assign small weights to cliques with
large variance of intensity or disparity. The term inside the summation is the truncated value
of the 𝑖-th largest distance between the labels of all pairs of random variables within the clique,
subject to the constraint that the label of no random variable is used more than once in the
computation of the clique potential value. In other words, our clique potential is proportional
to the sum of the truncation of the 𝑚 largest convex distance functions over disjoint pairs of
random variables.

Given an input, the desired output is obtained by solving the following optimization problem:
minx∈L𝑛 𝐸(x). Note that TMCM is a generalization of the 𝑃𝑛 Potts model [15] (𝑚 = 1, 𝑀 =
1) as well as its robust version [16] (𝑚 > 1, 𝑀 = 1). Furthermore, it is complementary to
the recently proposed parsimonious labeling, which generalizes metric labeling. Henceforth, we
assume the unary potentials are non-negative. This assumption is not restrictive as we can always
add a constant to the unary potentials of a random variable. This modification would only result
in the energy of all labelings changing by the same constant. As we shall see, our algorithm as
well as its theoretical guarantees are invariant to such changes in the energy function.

5 Advantages of using TMCM

Labeling 𝑚 = 1 𝑚 = 2 𝑚 = 3
(a) {1,1,1,1,2,2} 1 2 2

{1,2,3,4,5,6} 3 6 7
(b) {1,1,1,9,9,9} 3 6 9

{1,1,1,8,8,9} 3 6 9
(c) {1,1,1,1,1,7} 3 3 3

{1,1,1,2,3,4} 3 5 6

Table 1: Clique potential value 𝜃c(xc) defined by a linear function with 𝑀 = 3 and 𝜔c = 1 for various values
of 𝑚. Since clique size is 6, 0 ≤ 𝑚 ≤ 3. Pair (a) demonstrates why taking the largest convex distances favors
smoothness; (b) demonstrates how truncation prevents overpenalization of discontinuities; (c) demonstrates how
using 𝑚 > 1 can provide some degree of robustness to errors in the definitions of the cliques.

We know show how TMCM encourages smooth labelings, does not overpenalize discontinuities
and is robust to erroneous clique definitions.

Smoothness. The truncated max-of-convex potentials encourage smooth labelings. In order
to illustrate this, let us consider the example of a clique of six random variables Xc and a label
set L of size 10. We can define a truncated convex distance using a linear function 𝑑(𝑦) = |𝑦|
and a truncation factor of 𝑀 = 3. Consider pair (a) of labelings shown in table 1. If the labeling
is {1, 1, 1, 1, 2, 2} and 𝑀 = 3, 𝑚 = 3, 𝜔c = 1, 𝜃c(xc) = min(6-1, 3) + min(5 - 2, 6) + min(4
- 3, 3) = 3 + 3 + 1 = 7. Clearly, the first labeling of this pair is significantly smoother than
the second, which is reflected in the value of the clique potential for all values of 𝑚. In contrast,
if we were to consider the minimum distance among all pairs of labels, both the labelings will
provide a clique potential value of 0.

Discontinuities. Similar to the pairwise case, the use of a truncation factor helps prevent
overpenalization of discontinuities. For example, let us consider the pair (b) of labelings in
table 1. In both cases, the six random variables appear to belong to two groups, one whose

5

labels are low and one whose labels are high. Without a truncation, such a discontinuity would
have been penalized heavily (for example, 8 for 𝑚 = 1 for both the labelings). This in turn
would discourage the clique to be assigned this labeling even though this type of discontinuity is
expected to occur in natural images. However, with a truncation, the penalty is significantly less
(for example, 3 for 𝑚 = 1 for both the labelings), which can help preserve the discontinuities in
the labeling obtained via energy minimization.

Robustness. In order to use a TMCM, we would be required to define the cliques. For example,
given an image, we could use a bottom-up oversegmentation approach to obtain superpixels, and
then set all the pixels in a superpixel to belong to a clique. However, oversegmentation can
introduce errors since it has no notion of the specific vision application we are interested in
modeling. To add robustness to errors in the clique definitions, we can set 𝑚 > 1. For example,
consider pair (c) of labelings in table 1. The first of these labelings contains a single random
variable with a very high label, which could be due to the fact that the corresponding pixel has
been incorrectly grouped in this superpixel. As can be seen from the values of the potential,
the presence of such an erroneous pixel in the superpixel is not heavily penalized when we use
𝑚 > 1. For example, when 𝑚 = 3 the value of the clique potential for the first labeling (with an
erroneous pixel) is the same as the second labeling (which is a fairly smooth labeling).

6 Optimization via Range Expansion

As TMCM is a generalization of TCM, it follows that the corresponding energy minimization
problem is NP-hard. However, we show that the efficient and accurate range expansion algorithm
can be extended to handle this more general class of energy functions.

Algorithm 1 shows the main steps of range expansion. The algorithm starts by assigning the
random variables to an initial label (step 1). For example, all the random variables could be
assigned to the label 1. Next, it selects an interval of consecutive labels of size at most ℎ′ (steps
3-4), where ℎ′ is specified as an input to the algorithm. We will see later in the section that the
value of ℎ′ can be chosen to obtain the optimal worst case bound for specific instances of the
TMCM. Next, it minimizes the energy over all the labelings that either allow a random variable
to retain its current label, or choose a new label in the selected interval (step 5). If the energy
of the new labeling is lower than that of the current labeling, then the solution is updated (steps
6-8). This process is repeated for all the intervals of consecutive labels of size at most ℎ′. The
entire algorithm stops when the energy cannot be reduced further for any choice of the interval.

The crux of the range expansion algorithm is problem (3), which needs to be solved for any
given interval I and current labeling x̂. Unfortunately, this problem itself is NP-hard for TMCM.
Indeed, when ℎ′ = ℎ, problem (3) is equivalent to the original energy minimization problem. In
order to operationalize the range expansion algorithm, we need to devise an approximate algo-
rithm for problem (3). We achieve this in two steps. First, we obtain an overestimate of the
energy function 𝐸(·), which we denote by 𝐸′(·). The energy function 𝐸′(·) is restricted to the
labels in the interval I together with the labels specified by the current labeling x̂. Second, we
minimize the overestimated energy 𝐸′(·) over all of its putative labelings by solving an equivalent
𝑠𝑡-mincut problem. We describe our two-step algorithm in the next two subsections in detail.
Specifically, subsection 6.1 describes the exact form of the energy function 𝐸′(·), while subsec-
tion 6.2 describes the construction of the directed graph over which we solve the 𝑠𝑡-mincut
problem to obtain the labeling x′.

6

𝑛 Number of random variables

ℎ Number of labels

𝒱 {1, 2, . . . ,n}
L {1, 2, . . . , h}
X Set of random variables {X𝑎, 𝑎 ∈ 𝒱}
Xc Set of random variable belonging to a clique {𝑋𝑎, 𝑎 ∈ c ⊆ 𝒱}
xc Labeling of clique c

p(xc) Sorted list of the labels present in xc

In Interval of consecutive labels [𝑖𝑛 + 1, 𝑗𝑛]

h ′ Length of interval, that is, h ′ = 𝑗𝑛 − 𝑖𝑛

Γ𝑟 Set of intervals {[0, 𝑟], [𝑟 + 1, 𝑟 + L], . . . , [., ℎ− 1]}
f Labeling of the random field (𝑣𝑎 takes the label 𝑙𝑓(𝑎))

f * An optimal (MAP) labeling of the random field

𝜃𝑎(𝑖) Unary potential of assigning label 𝑙𝑖 to 𝑣𝑎

𝜔c Weight for clique Xc

c Size of clique Xc

d(.) Convex function used to define distance between two labels

M Truncation factor

𝜃c(xc) Clique potential of assigning label 𝑙𝑖 to 𝑣𝑎

E (f) Energy of the labeling 𝑓

𝒜(𝑓, 𝐼𝑛) {Xc ∈ 𝒞, 𝑓(𝑣) ∈ 𝐼𝑛∀𝑣 ∈ Xc}
ℬ(𝑓, 𝐼𝑛) {Xc ∈ 𝒞,∃𝑋𝑣, 𝑋𝑤 ∈ Xc|𝑓(𝑣) ∈ 𝐼𝑛 ∧ 𝑓(𝑤) /∈ 𝐼𝑛 }

Table 2: Definitions of various symbols used in the supplementary document

7

Algorithm 1 The range expansion algorithm.

input Energy function 𝐸(·), initial labeling x0, interval length ℎ′.
1: Initialize the output labeling x̂ = x0.
2: repeat
3: for all 𝑖𝑚 ∈ [−ℎ′ + 2, ℎ] do
4: Define an interval of labels I = {𝑓, · · · , 𝑙} where 𝑓 = max{𝑖𝑚, 1} and 𝑙 = min{𝑖𝑚 + ℎ′ −

1, ℎ}.
5: Obtain a new labeling x′ by solving the following optimization problem:

x′ = argmin
x

𝐸(x),

s.t. 𝑥𝑎 ∈ I ∪ {�̂�𝑎},∀𝑎 ∈ 𝒱. (3)

6: if 𝐸(x̂) > 𝐸(x′) then
7: Update x̂ = x′.
8: end if
9: end for

10: until The labeling does not change for any value of 𝑖𝑚.
output The labeling x̂.

6.1 Overestimation of the Energy Function

Given an interval I = {𝑓, · · · , 𝑙} of consecutive labels, and the current labeling x̂, we define
the new energy function 𝐸′(·) over the set of random variables X. Unlike the original energy
function, the label set corresponding to 𝐸′(·) is equal to L′ = {0, 1, · · · , ℎ′}, where ℎ′ = 𝑙−𝑓 +1.
The label 0 in the set L′ corresponds to a random variable retaining its current label, while any
other label 𝑖 ≥ 1 corresponds to a random variables taking the label 𝑓 + 𝑖− 1 ∈ I. A labeling
of the energy function 𝐸′(·) is denoted by y ∈ (L′)𝑛 in order to distinguish it from the labeling
corresponding to the original energy function. We say that a labeling x ∈ L𝑛 corresponds to the
labeling y ∈ (L′)𝑛 if

𝑥𝑎 =

{︃
�̂�𝑎 if 𝑦𝑎 = 0,

𝑦𝑎 + 𝑓 − 1 otherwise.
(4)

We define the unary potentials and the clique potentials of the energy function 𝐸′(·) as
follows.

Unary Potentials. The unary potential of a random variable 𝑋𝑎 (where 𝑎 ∈ 𝒱) being assigned
a label 𝑦𝑎 ∈ L′ is given by the following equation:

𝜃′𝑎(𝑦𝑎) =

{︂
𝜃𝑎(�̂�𝑎) + 𝜅𝑎 if 𝑦𝑎 = 0

𝜃𝑎(𝑦𝑎 + 𝑓 − 1) + 𝜅𝑎 otherwise.
(5)

In other words, if 𝑦𝑎 = 0 then the unary potential corresponds to the random variable 𝑋𝑎 re-
taining its current label �̂�𝑎, and if 𝑦𝑎 ̸= 0 then the unary potential corresponds to the random
variable 𝑋𝑎 being assigned the label 𝑦𝑎+𝑓−1 ∈ I. The constant 𝜅𝑎 is added to the unary poten-
tials to ensure that they are non-negative, which makes the description of the graph construction
in the next subsection simpler.

Clique Potentials. In order to describe the high-order clique potentials of the new energy
function we require a function 𝛿𝑎,𝑏 : L′ × L′ → R for each (𝑎, 𝑏) ∈ ℰ , which is defined as follows:

8

Figure 2: Arcs and their capacities for representing the unary potentials for the random variable 𝑋𝑎. According
to the labeling defined in equation (8), if 𝑥𝑎 = �̂�𝑎, then the arc (𝑠, 𝑉 𝑎

1) will be cut, which will contribute exactly
𝜃𝑎(�̂�𝑎) to the capacity of the cut. If 𝑥𝑎 = 𝑠+ 𝑖− 1 where 𝑖 ∈ {1, · · · , ℎ′ − 1}, then the arc (𝑉 𝑎

𝑖 , 𝑉 𝑎
𝑖+1) will be cut,

which will contribute exactly 𝜃𝑎(𝑠+ 𝑖− 1) to the capacity of the cut. If 𝑥𝑎 = 𝑙, then the arc (𝑉 𝑎
ℎ′ , 𝑡) will be cut,

which will contribute exactly 𝜃𝑎(𝑙) to the capacity of the cut. The arcs with infinite capacity ensure that exactly
one of the arcs from the set (𝑠, 𝑉 𝑎

1)∪ {(𝑉 𝑎
𝑖 , 𝑉 𝑎

𝑖+1), 𝑖 = 1, · · · , ℎ′ − 1} ∪ (𝑉 𝑎
ℎ′ , 𝑡) will be part of an 𝑠𝑡-cut with finite

capacity, which will guarantee that we are able to obtain a valid labeling.

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) =

⎧⎪⎪⎨⎪⎪⎩
min{𝑑(�̂�𝑎 − �̂�𝑏),𝑀} if 𝑦𝑎 = 𝑦𝑏 = 0,

𝑀 + 𝑑(𝑦𝑏 − 1) if 𝑦𝑎 = 0, 𝑦𝑏 ̸= 0,
𝑀 + 𝑑(𝑦𝑎 − 1) if 𝑦𝑎 ̸= 0, 𝑦𝑏 = 0,
𝑑(𝑦𝑎 − 𝑦𝑏) if 𝑦𝑎 ̸= 0, 𝑦𝑏 ̸= 0.

(6)

Here, 𝑑(·) is the convex function and 𝑀 is the truncation factor associated with the original
energy function 𝐸(·).

Proposition 1. 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) is submodular in the sense of label-set encoding used in [13] and is
an overestimate of the truncated convex distance min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀} (Proof in Appendix A).

Note that this submodular upper bound is not tight and has been chosen to facilitate the
analysis of multiplicative bounds later. Given a labeling yc ∈ (L′)𝑐 of a clique c of size 𝑐, we
denote a sorted list of the labels in yc as p(yc). Furthermore, we denote the indices of the sorted
list as q(yc). In other words, the random variable corresponding to the 𝑖-th smallest label (that
is, the 𝑖-th element of the list p(yc), which is denoted by 𝑝𝑖(yc)) is given by 𝑋𝑎 where 𝑎 = 𝑞𝑖(yc).
To avoid clutter, we will drop the argument yc from p and q whenever it is clear from context.

Using the above definitions, the high-order clique potential for the new energy 𝐸′(·) can be
concisely specified as

𝜃′c(yc) = 𝜔c

𝑚∑︁
𝑖=1

𝛿𝑞𝑖,𝑞𝑐−𝑖+1
(𝑝𝑖, 𝑝𝑐−𝑖+1). (7)

Hence, the clique potentials in the energy function 𝐸′(·) are the sum of the 𝑚 maximum sub-
modular functions over disjoint pairs of random variables in the clique.

6.2 Graph Construction

Our problem is to minimize the energy function 𝐸′(·) over all possible labelings y ∈ (L′)𝑛. To
this end, we convert it into an equivalent 𝑠𝑡-mincut problem over a directed graph, which can
be solved efficiently if all arc capacities are non-negative [2].

We construct a directed graph over the set of vertices {𝑠, 𝑡}∪V∪U∪W. The set of vertices V
model the random variables X. Specifically, for each random variable 𝑋𝑎 we define ℎ′ = 𝑙−𝑓 +1
vertices 𝑉 𝑎

𝑖 where 𝑖 ∈ {1, · · · , ℎ′}. The sets U and W represent auxiliary vertices, whose role
in the graph construction will be explained later when we consider representing the high-order
clique potentials. We also define a set of arcs over the vertices, where each arc has a non-negative
capacity. We would like to assign arc capacities such that the 𝑠𝑡-cuts of the directed graph satisfy

9

Figure 3: Arcs used to represent the high-order potentials for the clique Xc = {𝑋1, 𝑋2, · · · , 𝑋𝑐}. Left. The
term 𝑟𝑖𝑗 is defined in equation (9). The arcs represent the sum of the 𝑚 maximum convex distance functions
over disjoint pairs of random variables when no random variable retains its old label. These arcs are specified
only for 𝑖 ≤ 𝑗 and when either one or both of 𝑖 and 𝑗 are not equal to 1. Right. The terms 𝐴 and 𝐵 are defined
in equation (10). The arcs represent an overestimation of the clique potential for the case where some or all the
random variables retain their old label.

two properties. First, all the 𝑠𝑡-cuts with a finite capacity should include exactly one arc from
the set (𝑠, 𝑉 𝑎

1) ∪ {(𝑉 𝑎
𝑖 , 𝑉

𝑎
𝑖+1), 𝑖 = 1, · · · , ℎ′ − 1} ∪ (𝑉 𝑎

ℎ′ , 𝑡) for each random variable 𝑋𝑎. This
property would allow us to define a labeling y such that

𝑦𝑎 =

⎧⎨⎩
0 if the cut includes the arc (𝑠, 𝑉 𝑎

1)
𝑖 if the cut includes the arc (𝑉 𝑎

𝑖 , 𝑉 𝑎
𝑖+1)

ℎ′ if the cut includes the arc (𝑉 𝑎
ℎ′ , 𝑡).

(8)

Second, we would like the energy of the labeling y defined above to be as close as possible
to the capacity of the 𝑠𝑡-cut. This will allow us to obtain an optimal labeling with respect to
the energy function 𝐸′() by finding the 𝑠𝑡-mincut. We now specify the arcs and their capacities
such that they satisfy the above two properties. We consider two cases: (i) arcs that represent
the unary potentials; and (ii) arcs that represent the high-order clique potentials.

Representing Unary Potentials. We will represent the unary potential of 𝑋𝑎 using the arcs
specified in Figure 2. Since all the unary potentials are non-negative, it follows that the arc
capacities in Figure 2 are also non-negative.

Representing Clique Potentials. Consider a set of random variables Xc that are used to de-
fine a high-order clique potential. Without loss of generality, we assume Xc = {𝑋1, 𝑋2, · · · , 𝑋𝑐}.
In order to represent the potential value for a putative labeling xc of the clique, we introduce
two types of arcs, which are depicted in Figure 3. For the arcs shown in Figure 3 (left), the
capacities are specified using the term 𝑟𝑖𝑗 that is defined as follows:

𝑟𝑖𝑗 =

⎧⎪⎨⎪⎩
𝜔c

𝑑(𝑖,𝑗)
2

if 𝑖 = 𝑗 ̸= 1

𝜔c𝑑(𝑖, 𝑗) if 𝑖 > 𝑗

0 otherwise.

(9)

Here, the term 𝑑(𝑖, 𝑗) = 𝑑(𝑖− 𝑗 + 1) + 𝑑(𝑖− 𝑗− 1)− 2𝑑(𝑖− 𝑗) ≥ 0 since 𝑑(·) is convex, and 𝜔c ≥ 0
by definition. It follows that 𝑟𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ {1, · · · , ℎ′}. We have the following important

10

lemma which will be helpful in the discussion of graph properties later:

Lemma 1. Graph (a) of figure 3 exactly models clique potentials that are proportional to the
sum of 𝑚 maximum convex distance functions over all disjoint pairs of random variables of the
clique. (Proof in Appendix B)

For the arcs shown in Figure 3 (right), the capacities are specified using the terms 𝐴 and 𝐵
that are defined as follows:

𝐴 = 𝜔c𝑀,𝐵 =

(︂
𝜔c𝑀 − 𝜃c(x̂c)

𝑚

)︂
. (10)

Since 𝑀 ≥ 0, and 𝜃c(x̂c) ≤ 𝜔c𝑚𝑀 due to truncation, it follows that 𝐴,𝐵 ≥ 0.

6.2.1 Properties of the Graph

This part describes the properties of the above graph construction which will facilitate the
analysis of our algorithm for the truncated max-of-linear models.

Property 1. The cost of the 𝑠𝑡−cut exactly represents the sum of the unary potentials associated
with the corresponding labeling 𝑓 , that is,

∑︀
𝑣𝑎∈v

𝜃𝑎(𝑓(𝑎)).

This property follows from the description of the graph construction for unary potentials.

Property 2. For 𝑐 ∈ 𝒞, if for all 𝑋𝑎 ∈ Xc, 𝑓(𝑎) = 𝑓𝑛(𝑎) /∈ 𝐼𝑛 (all variables in a clique retain
their old labels), then the cost of the 𝑠𝑡−cut exactly represents the clique potential plus a constant
𝜅c = 𝜔𝑐𝑚 ·𝑀 − 𝜃c(x̂c).

Graph (a) of figure 3 assigns 0 cost. In graph (b), the vertices {𝑉 1
1 , . . . , 𝑉

𝑐
1 } ∈ Vt and hence,

the 𝑠− 𝑈 arc of capacity 𝑚𝐴 is cut.

𝑚𝐴 = 𝜔𝑐 ·𝑚 ·𝑀
= 𝜃c(x̂c) + 𝜔𝑐𝑚 ·𝑀 − 𝜃c(x̂c)

= 𝜃c(x̂c) + 𝜅c

Property 3. If all variables in a clique move to a label in the current interval and |𝑙𝑐− 𝑙1| ≤ 𝑀 ,
then the cost of the 𝑠𝑡−cut exactly represents the clique potential plus a constant 𝜅c = 𝜔𝑐𝑚 ·𝑀 −
𝜃c(x̂c).

As proved in lemma 1, graph (a) of figure 3 assigns exactly 𝜃c(xc) cost. In graph (b), the
vertices {𝑉 1

1 , . . . , 𝑉
𝑐
1 } ∈ Vs and hence, the 𝑊 − 𝑡 arc of capacity 𝐵 is cut, where

𝐵 = 𝜔𝑐 ·𝑚 ·𝑀 − 𝜃c(x̂c) = 𝜅c

Property 4. If all variables in a clique move to a label in the current interval and |𝑙𝑐− 𝑙1| ≥ 𝑀 ,
then the cost of the 𝑠𝑡−cut overestimates the clique potential, being

𝜔𝑐

𝑚∑︁
𝑖=1

𝑑(𝑝𝑖(xc − 𝑝𝑐−𝑖+1(xc)

plus a constant 𝜅c = 𝜔𝑐𝑚 ·𝑀 − 𝜃c(x̂c).

Property 5. If 𝑘(< 𝑐) variables in a clique retains their old labels, then the cost of the 𝑠𝑡−cut
overestimates the clique potential, being.

11

𝜔𝑐

𝑘∑︁
𝑖=1

𝑑(𝑝𝑐−𝑖+1(xc) − 𝑖𝑛 − 1) + 𝜔𝑐 ·𝑚 ·𝑀

plus a constant 𝜅c = 𝜔𝑐𝑚 ·𝑀 − 𝜃c(x̂c).
The following proposition follows from the properties of the graph:

Proposition 2. Given a cut that partitions the vertices V into two disjoint sets V𝑠 and V𝑡,
and the corresponding labeling y defined in equation (8), the capacity of the cut is equal to the
energy 𝐸′(y) up to a constant.

Energy Minimization. The above proposition implies that the labeling y′ corresponding to
the 𝑠𝑡-mincut minimizes the energy 𝐸′(·) over all possible labelings y ∈ (L′)𝑛. Since all the arc
capacities in the graph are non-negative, the labeling y′ can be computed efficiently by solving
the 𝑠𝑡-mincut problem on the directed graph defined above. Once the labeling y′ is computed,
we find an approximate solution x′ to problem (3) using equation (4).

6.3 Multiplicative Bounds

We obtain multiplicative bounds for our algorithm by making use of the fact that our algorithm
terminates only when the energy cannot be reduced for any interval 𝐼𝑛. This implies that our
algorithm has found the local minimum of the large neigbourhood defined by the intervals. We
first obtain a lower bound on the reduction in energy for a given interval by making use of the
graph properties. Since the final labeling 𝑓 is a local minimum over the intervals, this lower
bound is non-positive when the algorithm completes. This fact enables us to get an upper bound
on the energy of the final labeling.

We first need to introduce some notation. Let 𝑓𝑛 denote the labeling after the 𝑛-th iteration
and 𝐸(𝑓𝑛) denote the corresponding energy. Also, 𝑓* denotes optimal labeling of the MRF.

Let 𝑟 ∈ [0, ℎ′ − 1] be a uniformly distributed random integer and ℎ′ be the length of the
interval. Using 𝑟 we define the following set of intervals

Γ𝑟 = {[0, 𝑟], [𝑟 + 1, 𝑟 + ℎ′], [𝑟 + ℎ′ + 1, 𝑟 + 2ℎ′], ..., [., ℎ− 1]}

where ℎ is the total number of labels.
Let X(𝑓*, 𝐼𝑛) contain all the random variables that take an optimal labeling in 𝐼𝑛, 𝒜(𝑓, 𝐼𝑛)

be the set of all cliques for which all variables take optimum label in the interval 𝐼𝑛 and ℬ(𝑓, 𝐼𝑛)
be the set of all cliques for which at least one, but not all, variable takes optimum label in the
interval 𝐼𝑛 (that is, at least one but not all variables retains old label).

In order to make the analysis more readable, the following shorthand notation is introduced:

∙ We denote 𝜔c max𝑎,𝑏∈Xc 𝑑(𝑓*(𝑎) − 𝑓*(𝑏)) as 𝑡𝑛𝑐

∙ We denote 𝜔c max𝑎∈Xc 𝑑(𝑓*(𝑎) − (𝑖𝑛 + 1)) + 𝜔cM as 𝑠𝑛𝑐

The following lemma establishes a lower bound in the reduction in energy for any given
interval:

Lemma 2. At an iteration of our algorithm, given the current labeling 𝑓𝑛 and an interval
𝐼𝑛 = [𝑖𝑛 + 1, 𝑗𝑛], the new labeling 𝑓𝑛+1 obtained by solving the st-mincut problem reduces the
energy by at least the following:

12

∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓𝑛(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)∪ℬ(𝑓,𝐼𝑛)

𝜃c(xc)

−

⎛⎝ ∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓*(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠
(Proof in Appendix C)

The following equation can be deduced from the above definitions:∑︁
𝑋𝑎∈X

𝜃𝑎(𝑓*(𝑎)) =
∑︁

𝐼𝑛∈ℐ𝑟

∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓*(𝑎)) (11)

since 𝑓*(𝑎) belongs to exactly one interval in 𝐼𝑟 for all 𝑋𝑎.
For the final labeling 𝑓 of the range expansion algorithm, the term in lemma 2 should be

non-positive for all intervals 𝐼𝑛 because 𝑓 is a local optimum. Hence,

∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)∪ℬ(𝑓,𝐼𝑛)

𝜃c(xc)

≤

⎛⎝ ∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓*(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠ ,∀𝐼𝑛

We sum the above inequality over all 𝐼𝑛 ∈ Γ𝑟. The summation of the LHS is at least 𝐸(𝑓).
Also, using (28), the summation of the above inequality can be written as:

𝐸(𝑓) ≤
∑︁

𝑋𝑎∈X

𝜃𝑎(𝑓*(𝑎)) +
∑︁

𝐼𝑛∈Γ𝑟

⎛⎝ ∑︁
Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠
We now take the expectation of the above inequality over the uniformly distributed random

integer 𝑟 ∈ [0, ℎ′ − 1]. The LHS of the inequality and the first term on the RHS (that is,∑︀
𝜃𝑎(𝑓*(𝑎))) are constants with respect to 𝑟. Hence, we get

𝐸(𝑓) ≤
∑︁

𝑋𝑎∈X

𝜃𝑎(𝑓*(𝑎)) +
1

ℎ′

∑︁
𝑟

∑︁
𝐼𝑛∈Γ𝑟

⎛⎝ ∑︁
Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠ (12)

For linear distance function 𝑑(.), we have the following lemma:

Lemma 3. When 𝑑(.) is linear, that is, 𝑑(𝑥) = |𝑥|, the following inequality holds true:

1

ℎ′

∑︁
𝑟

∑︁
𝐼𝑛∈Γ𝑟

⎛⎝ ∑︁
Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠
≤ 𝑚𝑎𝑥

{︂
𝑐

2

(︂
2 +

ℎ′

𝑀

)︂
,

(︂
2 +

2𝑀

ℎ′

)︂}︂∑︁
c∈𝒞

𝜃c(xc)

(13)

where c is the largest clique in the random field (Proof in Appendix D).

13

Using lemma 3 in inequality 12, we obtain the multiplicative bound for max-of-linear models
for 𝑚 = 1:

Proposition 3. The range expansion algorithm with ℎ′ = 𝑀 has a multiplicative bound of 𝑂(𝐶)
for truncated max-of-linear model when 𝑚 = 1. The term 𝐶 equals the size of the largest clique.
Hence, if x* is a labeling with minimum energy and x̂ is the labeling estimated by range expansion
algorithm then ∑︁

𝑎∈𝒱
𝜃𝑎(�̂�𝑎) +

∑︁
c∈𝒞

𝜃c(x̂c) ≤
∑︁
𝑎∈𝒱

𝜃𝑎(𝑥*
𝑎) + 𝑂(𝐶)

∑︁
c∈𝒞

𝜃c(x*
c).

The above inequality holds for arbitrary set of unary potentials and non-negative clique weights
(Proof in Appendix E).

We now state the generalization for Proposition 3 for any given 𝑚:

Proposition 4. The range expansion algorithm with ℎ′ = 𝑀 has a multiplicative bound of
𝑂(𝑚 · 𝐶) for truncated max-of-linear model for any general value of 𝑚. The term 𝐶 equals the
size of the largest clique. Hence, if x* is a labeling with minimum energy and x̂ is the labeling
estimated by range expansion algorithm then∑︁

𝑎∈𝒱
𝜃𝑎(�̂�𝑎) +

∑︁
c∈𝒞

𝜃c(x̂c) ≤
∑︁
𝑎∈𝒱

𝜃𝑎(𝑥*
𝑎) + 𝑂(𝑚 · 𝐶)

∑︁
c∈𝒞

𝜃c(x*
c).

The above inequality holds for arbitrary set of unary potentials and non-negative clique weights
(Proof in Appendix F).

Note that for 𝑚 = 1, the bound of the move making algorithm for parsimonious labeling

(baseline) is
(︁

𝑟
𝑟−1

)︁
(𝐶− 1) ·min(𝐶, ℎ) ·𝑂(log ℎ) where 𝐶 is the size of the largest clique, ℎ is the

number of labels, and 𝑟 is a parameter in the algorithm [8]. Our algorithm gives a better bound
of 𝑂(𝐶) and does not depend on the number of labels.

Similar to the case of max-of-linear models, by making use of Theorem 4 of [4], we obtain the
bound for max-of-quadratic models for 𝑚 = 1:

Proposition 5. The range expansion algorithm with ℎ′ =
√
𝑀 has a multiplicative bound of

𝑂(𝐶
√
𝑀) for the truncated max-of-quadratic model when 𝑚 = 1.

7 Experiments

To demonstrate the efficacy of our algorithm, we test it on the two problems of image inpainting
and denoising, and stereo matching. The final labeling energy and convergence time are used
as evaluation criteria. We used the parsimonious labeling algorithm of Dokania et al. [8] and
the move-making algorithm for the co-occurrence based energy function of Ladicky et al. [25]
as baselines. For comparison, we restrict ourselves to max-of-linear models and 𝑚 = 1, as the
available code for the baselines can only handle this special case. For completeness, we report
the results of our range expansion algorithm for other cases of TMCM and on synthetic data as
well.

7.1 Synthetic Data

Data. We generate lattices of size 100 × 100, where each lattice point represents a variable
taking one of 20 labels. The cliques are defined as all 10 × 10 subwindows. The unary potentials

14

Figure 4: Results for synthetic data using truncated linear distance function. The plots show the variation of
energy versus time, averaged over 50 lattices using 𝜔𝑐 = 5. We use truncation factors as 𝑀 = 5, 10 and 15 and
𝑚 = 1, and for each we vary interval lengths for our algorithm. Parsimonious labeling performs well for 𝑀 =
5, but our approach outperforms for higher values of 𝑀 . Red dot indicates convergence of parsimonious labeling
and dotted line indicates extrapolation.

are uniformly sampled in the range [1, 100]. The truncation factors for linear case are 𝑀 ∈
{5, 10, 15} and for quadratic case 𝑀 ∈ {25, 100, 225}. In each energy function, all cliques were
assumed to have the same clique weight, being 5 and 10 for linear model and 3 and 5 for quadratic
model. 𝑚 varies in the range {1, 3, 5}.

Method. For each energy function obtained by a particular setting of the above parameters,
we vary the interval length up to 𝑀 + 1. We run [8] and [25] only for linear distance function and
𝑚 = 1 and repeat the experiments for 50 randomly generated unaries for linear and quadratic
cases.

Results. The plots in Figure 6 and 5 show the average energy as a function of average time for
our algorithm and the baselines using weight as 5 for max-of-linear models, with and without the
results of [25] respectively. We see that the energy values of [25] are much higher as compared to
our algorithm. Our algorithm gives lower energy solutions than parsimonious labeling method
except when the truncation factor is low (𝑀 = 5). The plots in Figures 8 and 7 shows the
results for max-of-linear models using weight as 10 with and without the cooccurrence results
respectively. Our algorithm gives better results than the baselines for all 𝑀 . Both the baselines
converge faster than our method. In practice, intervals smaller than the optimum size give almost
equally good results and converge faster. Figure 10 shows the plot for max-of-quadratic cases
using weight as 5.

7.2 Image Inpainting and Denoising

Data. Given an image with noise and obscured/inpainted regions (regions with missing pix-
els), the task is to denoise it and fill the obscured regions in a way that is consistent with the
surrounding regions. The images ‘house’ and ‘penguin’ from the Middlebury data set were used
for the experiments. Since the images are grayscale, they have 256 labels in the interval [0, 255],

15

Figure 5: Results for synthetic data using truncated linear distance function. The plots show the variation of
energy versus time, averaged over 50 lattices using 𝜔𝑐 = 5. We use truncation factors as 𝑀 = 5, 10 and 15 and
𝑚 = 1, and for each we vary interval lengths for our algorithm. This plot is the same as shown in the paper, but
we include it here for the sake of comparison. Red dot indicates convergence of parsimonious labeling algorithm
and dotted line indicates extrapolation.

Figure 6: Results for synthetic data using truncated linear distance function. The plots show the variation of
energy versus time, averaged over 50 lattices using 𝜔𝑐 = 5. We use truncation factors as 𝑀 = 5, 10 and 15 and
𝑚 = 1, and for each we vary interval lengths for our algorithm. This plot corresponds to the same experiment
as mentioned in the paper, but with results for co-occurrence included. Red and black dots indicate convergence
of respective algorithms and dotted line indicates extrapolation.

16

Figure 7: Results for synthetic data using truncated linear distance function. The plots show the variation of
energy versus time, averaged over 50 lattices using 𝜔𝑐 = 10. We use truncation factors as 𝑀 = 5, 10 and 15
and 𝑚 = 1, and for each we vary interval lengths for our algorithm. Parsimonious labeling performs well for
𝑀 = 5, but our approach outperforms for higher values of 𝑀 . Red dot indicates convergence of parsimonious
labeling and dotted line indicates extrapolation.

Figure 8: Results for synthetic data using truncated linear distance function. The plots show the variation of
energy versus time, averaged over 50 lattices using 𝜔𝑐 = 5. We use truncation factors as 𝑀 = 5, 10 and 15 and
𝑚 = 1, and for each we vary interval lengths for our algorithm. This plot corresponds to the same experiment
as in figure 7, but with results for co-occurrence included. Red and black dots indicate convergence of respective
algorithms and dotted line indicates extrapolation.

17

Figure 9: Results for synthetic data using truncated quadratic distance function. The plots show the variation
of energy versus time, averaged over 50 lattices using 𝜔𝑐 = 3. We use 𝑀 = 25, 100 and 225 and 𝑚 = 1, and
for each we vary interval lengths for our algorithm.

Figure 10: Results for synthetic data using truncated quadratic distance function. The plots show the variation
of energy versus time, averaged over 50 lattices using 𝜔𝑐 = 5. We use 𝑀 = 25, 100 and 225, and for each we
vary interval lengths for our algorithm.

18

(a) Penguin input (b) Cooccurrence (c) Parsimonious

(Energy, Time (s)) (14735411, 237) (12585846, 456)

(d) 𝑚 = 1, ℎ′ = 5 (e) 𝑚 = 1, ℎ′ = 10 (f) 𝑚 = 1, ℎ′ = 20

(12541999, 1694) (123598999, 2633) (123018999, 3963)

(g) 𝑚 = 3, ℎ′ = 5 (h) 𝑚 = 3, ℎ′ = 10 (i) 𝑚 = 3, ℎ′ = 20

(126481999, 1379) (125784999, 2499) (124044999, 5018)

(j) 𝑚 = 5, ℎ′ = 5 (k) 𝑚 = 5, ℎ′ = 10 (l) 𝑚 = 5, ℎ′ = 20

(127329999, 1357) (125284999, 2367) (124501999, 5706)

Figure 11: Image inpainting results for ‘penguin’. Note that comparison with (b) and (c) makes sense only for
𝑚 = 1. Also, we restricted our experiments to smaller (and suboptimal) ℎ′ due to computational issues.

19

(a) Penguin input (b) Cooccurrence (c) Parsimonious

(Energy, Time (s)) (42018464, 486) (37349032, 12024)

(d) 𝑚 = 1, ℎ′ = 5 (e) 𝑚 = 1, ℎ′ = 10 (f) 𝑚 = 1, ℎ′ = 20

(37196999, 8084) (370873999, 11356) (369035999, 22752)

(g) 𝑚 = 3, ℎ′ = 5 (h) 𝑚 = 3, ℎ′ = 10 (i) 𝑚 = 3, ℎ′ = 20

(373067999, 7744) (37115999, 9547) (370936999, 23261)

(j) 𝑚 = 5, ℎ′ = 5 (k) 𝑚 = 5, ℎ′ = 10 (l) 𝑚 = 5, ℎ′ = 20

(374691999, 6476) (372811999, 9949) (375026999, 22985)

Figure 12: Image inpainting results for ‘house’. Note that comparison with (b) and (c) makes sense only for
𝑚 = 1. Also, we restricted our experiments to smaller (and suboptimal) ℎ′ due to computational issues.

20

each representing an intensity value. The unary potential for each pixel corresponding to a par-
ticular label equals the squared difference between the label and the intensity value at the pixel.
We use high-order cliques as the super-pixels obtained using the mean-shift method [5]. The
parameters 𝜔𝑐, 𝑀 and 𝑚 are varied to give different truncated max-of-linear energy functions.

Method. For each parameter setting of 𝜔𝑐, 𝑀 and 𝑚, we vary the interval lengths for our
algorithm and make a comparison with the baselines.

Results. Results for 𝜔𝑐 = 40, 𝑀 = 40, and 𝑚 = 1, 3 and 5 for ‘penguin’ and 𝜔𝑐 = 50, 𝑀 = 50,
and 𝑚 = 1, 3 and 5 for ‘house’ are shown in Figure 12 for varying interval lengths ℎ′ = {5, 10, 20}.
Our algorithm consistently gives lower energy labeling as compared to both [8] and [25] even for
small ℎ′. Note that the value of ℎ′ giving best results in practice differs from that suggested
in Proposition 3 for optimal bound. For ‘penguin’, our algorithm gives cleaner denoised image,
preserving edges and details. On the other hand, both [8] and [25] exhibit significant blocking
effect. Moreover, the output is more natural for 𝑚 = 3 as compared to 𝑚 = 1. Even for ‘house’,
our output looks more visually appealing as compared to baselines.

21

7.3 Stereo Matching

Data. In the stereo matching problem, we have two rectified images of the same scene from
two cameras set slightly apart. We need to estimate the horizontal disparity between a pixel in
the right camera image from the corresponding pixel in the left camera. We use ‘tsukuba’ and
‘teddy’ data sets from the Middlebury stereo collection for our experiments. In each case, we
have a pair of RGB images and ground truth disparities. We assume the unary potentials to be
the 𝐿1-norm of the difference in RGB values of the left and right image pixels. There are 16
labels for ‘tsukuba’, 20 for ‘venus’, and 60 for ‘teddy’ and ‘cones’. The high-order cliques are
super-pixels obtained using mean-shift method [5]. The parameters 𝜔𝑐, 𝑀 and 𝑚 are varied to
give different truncated max-of-linear energy functions.

Method. For each parameter setting of 𝜔𝑐, 𝑀 and 𝑚, we vary the interval lengths for our
algorithm and make a comparison with the baselines.

Results. Results for 𝜔𝑐 = 20, 𝑀 = 5, and 𝑚 = 1 and 3 for ‘tsukuba’, ‘venus’ and ‘cones’ and
𝜔𝑐 = 20, 𝑀 = 1, and 𝑚 = 1 and 3 for ‘teddy’ are shown in Figure 13. We used interval length ℎ′

as 4 for ‘tsukuba’ and ‘venus’, 6 for ‘cones’ and 2 for ‘teddy’. Apart from ‘cones’, our algorithm
consistently gives lower energy labeling as compared to both [8] and [25]. For ‘tsukuba’, our
algorithm captures the details of the face better than [8] and [25]. For ‘venus’, we get smoother
labeling for the front plane. Moreover, our results for 𝑚 = 3 exhibit robustness to inaccurate
clique definitions.

Results. Results for 𝜔𝑐 = 20, 𝑀 = 5, and 𝑚 = 1 and 3 for ‘tsukuba’, ‘venus’ and ‘cones’, and
𝜔𝑐 = 20, 𝑀 = 1, and 𝑚 = 1 and 3 for ‘teddy’ are shown in Figure 13. We show the results for
interval length 3 for ‘teddy’, and 6 for others. Note that in our main paper, we used interval
length ℎ′ as 4 for ‘tsukuba’ and ‘venus’, and 1 for ‘teddy’ and did not show the results for
‘cones’. Apart from ‘cones’, our algorithm consistently gives lower energy labeling as compared
to both [8] and [25].

Expressive Power of higher 𝑚 Figure 14 shows how using higher 𝑚 makes the model robust
to erroneous clique definitions for a particular instance of stereo matching.

22

(1a) Ground truth (2a) Ground truth (3a) Ground truth (4a) Ground truth

(Energy, Time (s)) (Energy, Time (s)) (Energy, Time (s)) (Energy, Time (s))

(1b) Cooccurrence (2b) Cooccurrence (3b) Cooccurrence (4b) Cooccurrence

(2098800, 101) (3259900, 495) (2343200, 261) (8260100, 308)

(1c) Parsimonious (2c) Parsimonious (3c) Parsimonious (4c) Parsimonious

(1364200, 225) (3201300, 484) (2262600, 482) (4985639, 759)

(1d) 𝑚 = 1, ℎ′ = 4 (2d) 𝑚 = 1, ℎ′ = 2 (3d) 𝑚 = 1, ℎ′ = 4 (4d) 𝑚 = 1, ℎ′ = 6

(1257249, 256) (3004059, 1304) (2210629, 2700) (5237919, 3711)

(1e) 𝑚 = 1, ℎ′ = 6 (2e) 𝑚 = 1, ℎ′ = 3 (3e) 𝑚 = 1, ℎ′ = 6 (4e) 𝑚 = 1, ℎ′ = 6

(1258499, 518) (3202489, 6216) (2207549, 4624) (5237919, 3711)

(1f) 𝑚 = 3, ℎ′ = 6 (2f) 𝑚 = 3, ℎ′ = 3 (3f) 𝑚 = 3, ℎ′ = 6 (4f) 𝑚 = 3, ℎ′ = 6

(1391629*, 720) (3211819*, 5043) (2222299*, 4189) (5258999*, 4137)

(1g) 𝑚 = 3, ℎ′ = 4 (2g) 𝑚 = 3, ℎ′ = 2 (3g) 𝑚 = 3, ℎ′ = 4 (4g) 𝑚 = 3, ℎ′ = 6

(1267449*, 335) (3211829*, 1139) (2235689*, 3032) (5258999*, 4137)

Figure 13: Stereo matching results: Figures (1a), (1b), (1c) and (1d) are the ground truth disparity for ‘tsukuba’, ‘teddy’, ‘venus’ and ‘cones’ respectively.
Our results for 𝑚 = 1 (1d), (2d), and (3d) are significantly better than those of [25] (1b), (2b) and (3b), and of [8] (1c), (2c) and (3c) in terms of
energy. For ‘cones’, [8] (4c) performs better than our algorithm. We also show results for 𝑚 = 3. We use super-pixels obtained using mean-shift as
cliques. *Note that 𝑚 = 3 uses a different energy function from other cases.

23

(a) ‘Teddy’ left stereo image (b) Mean-shift superpixels (c) Ground truth disparity (d) 𝑚 = 1, 𝑀 = 10 (e) 𝑚 = 100, 𝑀 = 10

Figure 14: Expressive power of TMCM with higher 𝑚. The superpixels in (b) are not accurate - several ‘cloth’ pixels (foreground) have been assigned to
the ‘board’ superpixel (background). Our algorithm with higher 𝑚 (e) produces much more accurate labeling than 𝑚 = 1 (d). Note that we used truncation
𝑀 = 10 and the result for 𝑚 = 1 is noticeably worse than in Fig 5 in main paper (𝑀 = 1). Also we observe a much larger improvement for higher 𝑚
since we used a much larger 𝑚 (100 here, 3 in main paper).

24

8 Discussion

We proposed a novel family of high-order random fields called truncated max-of-convex models
(TMCM) which are generalization of truncated convex models (TCM). To perform inference in
TMCM, we developed a novel range expansion algorithm for energy minimization that retains
the efficiency of 𝑠𝑡-mincut and provides provably accurate solutions. The algorithm relies on an
exact graph representation of max-of-convex models, a submodular overestimate of the energy
function for any interval length and a graph construction that represents this overestimate,
allowing the inference problem to be solved using 𝑠𝑡-mincut. From a theoretical point of view,
our work can be thought of as a step towards the identification of graph representable submodular
functions and automated construction of graphs for such functions.

9 Acknowledgement

This work was supported by the Google DeepMind PhD Studentship and by the Alan Turing
Institute under the EPSRC grant EP/N510129/1. We thank Rudy Bunel, Diane Bouchacourt,
and Stuart Golodetz for their useful discussions and insights.

A Proof of Proposition 1

Proposition 1: 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) is submodular in the sense of label-set encoding used in [13]and is
an overestimate of the truncated convex distance min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀}.

Proof: Note that to prove that 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) is submodular, we need to show that the following
inequality holds:

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏 + 1) ≤ 𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏 + 1) (14)

We consider the 4 cases corresponding to equation 6.
Case 1: 𝑦𝑎 = 𝑦𝑏 = 0

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) = 𝛿𝑎,𝑏(0, 0) = min{𝑑(�̂�𝑎 − �̂�𝑏),𝑀}
min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀} = min{𝑑(�̂�𝑎 − �̂�𝑏),𝑀}

Hence, 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) = min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀}.
To prove submodularity, consider L.H.S of inequality 14:

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏 + 1) = 𝛿𝑎,𝑏(0, 0) + 𝛿𝑎,𝑏(1, 1)

= min{𝑑(�̂�𝑎 − �̂�𝑏),𝑀} + 0

The R.H.S of inequality 14 is given by:

𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏 + 1) = 𝛿𝑎,𝑏(1, 0) + 𝛿𝑎,𝑏(0, 1)

= 𝑀 + 𝑑(𝑦𝑏 − 1) + 𝑀 + 𝑑(𝑦𝑎 − 1)

25

Clearly L.H.S < R.H.S for this case.

Case 2: 𝑦𝑎 = 0, 𝑦𝑏 ̸= 0

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) = 𝛿𝑎,𝑏(0, 𝑦𝑏) = 𝑀 + 𝑑(𝑦𝑏 − 1)

min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀} = min{𝑑(�̂�𝑎 − 𝑥𝑏),𝑀}

Hence, 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) ≥ min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀}.
For submodularity, L.H.S of inequality 14 is given by:

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏 + 1) = 𝛿𝑎,𝑏(0, 𝑦𝑏) + 𝛿𝑎,𝑏(1, 𝑦𝑏 + 1)

= 𝑀 + 𝑑(𝑦𝑏 − 1) + 𝑑(𝑦𝑏)

The R.H.S of inequality 14 can be written as:

𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏 + 1) = 𝛿𝑎,𝑏(1, 𝑦𝑏) + 𝛿𝑎,𝑏(0, 𝑦𝑏 + 1)

= 𝑑(𝑦𝑏 − 1) + 𝑀 + 𝑑(𝑦𝑏)

Hence L.H.S = R.H.S for this case.
Case 3: 𝑦𝑎 ̸= 0, 𝑦𝑏 = 0

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) = 𝛿𝑎,𝑏(𝑦𝑎, 0) = 𝑀 + 𝑑(𝑦𝑎 − 1)

min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀} = min{𝑑(𝑥𝑎 − �̂�𝑏),𝑀}

Hence, 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) ≥ min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀}.
To prove submodularity, consider L.H.S of inequality 14:

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏 + 1) = 𝛿𝑎,𝑏(𝑦𝑎, 0) + 𝛿𝑎,𝑏(𝑦𝑎 + 1, 1)

= 𝑀 + 𝑑(𝑦𝑎 − 1) + 𝑑(𝑦𝑎)

The R.H.S of inequality 14 is given by:

𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏 + 1) = 𝛿𝑎,𝑏(𝑦𝑎 + 1, 0) + 𝛿𝑎,𝑏(𝑦𝑎, 1)

= 𝑀 + 𝑑(𝑦𝑎) + 𝑑(𝑦𝑎 − 1)

Hence L.H.S = R.H.S for this case.
Case 4: 𝑦𝑎 ̸= 0, 𝑦𝑏 ̸= 0

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) = 𝑑(𝑦𝑎 − 𝑦𝑏)

26

Hence, 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) ≥ min{𝑑(𝑥𝑎 − 𝑥𝑏),𝑀}.
To prove submodularity, consider L.H.S of inequality 14:

𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏 + 1) = 2 · 𝑑(𝑦𝑎 − 𝑦𝑏)

The R.H.S of inequality 14 is given by:

𝛿𝑎,𝑏(𝑦𝑎 + 1, 𝑦𝑏) + 𝛿𝑎,𝑏(𝑦𝑎, 𝑦𝑏 + 1) = 𝑑(𝑦𝑎 − 𝑦𝑏 − 1) + 𝑑(𝑦𝑎 − 𝑦𝑏 + 1)

Since 𝑑() is convex, L.H.S ≤ R.H.S for this case.
This completes our proof of proposition 1. �

B Proof of Lemma 1

Lemma 1: Graph (a) of figure 3 exactly models clique potentials that are proportional to the
sum of 𝑚 maximum convex distance functions over all disjoint pairs of random variables of the
clique.

Proof: Let us arrange the labels assigned to Xc in increasing order as {𝑙𝑘1 , . . . , 𝑙𝑘𝑐}, where
𝑐 = |Xc| indicates the size of the clique. The sum of 𝑚 maximum convex distance functions over
all disjoint pairs of random variables of the clique is given by:

𝜔c(𝑑(𝑘𝑐 − 𝑘1) + 𝑑(𝑘𝑐−1 − 𝑘2) + + 𝑑(𝑘𝑐−𝑚+1 − 𝑘𝑚)) (15)

When 𝑖 ∈ [𝑘𝑝 + 1, 𝑘𝑝+1], exactly 𝑝 variables in Xc are assigned a label between [𝑙𝑘1
, 𝑙𝑘𝑝

] and
the corresponding 𝑝 vertices among {𝑉 1

𝑖 , 𝑉
2
𝑖𝑉

𝑐
𝑖 } will be in Vt (the remaining 𝑐 − 𝑡 vertices

will be in Vs). Similarly, when 𝑗 ∈ [𝑘𝑐−𝑝 + 1, 𝑘𝑐−𝑝+1], exactly 𝑝 variables in Xc are assigned a
label in the range [𝑙𝑘𝑐−𝑝+1

, 𝑙𝑘𝑐
] and the corresponding 𝑝 vertices among {𝑉 1

𝑗 , 𝑉
2
𝑗𝑉

𝑐
𝑗 } will be in

Vs (the remaining 𝑐− 𝑝 vertices will be in Vt). 𝑠𝑡-mincut includes either the arcs (𝑈𝑖𝑗 , 𝑉
𝑎
𝑖) for

all 𝑉 𝑎
𝑖 ∈ Vt or the arcs (𝑉 𝑎

𝑗 ,𝑊𝑖𝑗) for all 𝑉 𝑎
𝑗 ∈ Vs or the arc (𝑊𝑖𝑗 , 𝑈𝑖𝑗), whichever contribute

the smallest cost to the cut. Let 𝐶𝑖𝑗 denote the sum of capacitites of arcs cut by 𝑠𝑡-mincut in
graph (a) of figure 3 for a given pair 𝑖, 𝑗. Clearly, 0 ≤ 𝐶𝑖𝑗 ≤ 𝑚 · 𝑟𝑖𝑗 .

Let us partition the interval [𝑘1 + 1, 𝑘𝑐] to 2𝑚 − 1 intervals [𝑘1 + 1, 𝑘2], [𝑘2 + 1, 𝑘3], ...[𝑘𝑚 +
1, 𝑘𝑐−𝑚+1]..., [𝑘𝑐−2 + 1, 𝑘𝑐−1], [𝑘𝑐−1 + 1, 𝑘𝑐]. 𝐶𝑖𝑗 depends on the intervals in which 𝑖 and 𝑗 lie.
Given a labeling xc, the total contribution of all the cut arcs is equal to

𝑘𝑐∑︁
𝑖=𝑘1+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘2∑︁
𝑖=𝑘1+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 +

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗

+ · · · +

𝑘𝑐−𝑚+1∑︁
𝑖=𝑘𝑚+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 + · · · +

𝑘𝑐∑︁
𝑖=𝑘𝑐−1+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 (16)

Consider the second term of the series in (16). When 𝑖 ∈ [𝑘2 + 1, 𝑘3], exactly 2 variables in
Xc take up a label in the range [𝑘1, 𝑘2] and hence, two vertices among {𝑉 1

𝑖 , 𝑉
2
𝑖𝑉

𝑐
𝑖 } belong to

27

Vt. When 𝑗 ∈ [𝑘𝑐−1 + 1, 𝑘𝑐], only one vertex among {𝑉 1
𝑗 , 𝑉

2
𝑗𝑉

𝑐
𝑗 } belongs to Vs, giving 𝐶𝑖𝑗

as 𝑟𝑖𝑗 . For 𝑗 in all other intervals, at least two vertices among {𝑉 1
𝑗 , 𝑉

2
𝑗𝑉

𝑐
𝑗 } belong to Vs, and

𝐶𝑖𝑗 equals 2 · 𝑟𝑖𝑗 . Thus, the following holds

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐∑︁
𝑗=𝑘𝑐−1+1

𝑟𝑖𝑗 +

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐−1∑︁
𝑗=𝑖

2𝑟𝑖𝑗

=

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐∑︁
𝑗=𝑘𝑐−1+1

𝑟𝑖𝑗 +

⎛⎝ 𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗

⎞⎠
=

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗

where the last step is obtained by combining the first and the third terms in the summation.
In general, for 𝑝 ∈ [1,𝑚− 1] we can write

𝑘𝑝+1∑︁
𝑖=𝑘𝑝+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘𝑝+1∑︁
𝑖=𝑘𝑝+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘𝑝+1∑︁
𝑖=𝑘𝑝+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗 + · · · +

𝑘𝑝+1∑︁
𝑖=𝑘𝑝+1

𝑘𝑐−𝑝+1∑︁
𝑗=𝑖

𝑟𝑖𝑗 (17)

Similar argument can be extended for 𝑝 ∈ [𝑐−𝑚 + 1, 𝑐− 1]
Using (17), each term of (16) can be written as

𝑘2∑︁
𝑖=𝑘1+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘2∑︁
𝑖=𝑘1+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘3∑︁
𝑖=𝑘2+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗

𝑘4∑︁
𝑖=𝑘3+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘4∑︁
𝑖=𝑘3+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘4∑︁
𝑖=𝑘3+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘4∑︁
𝑖=𝑘3+1

𝑘𝑐−2∑︁
𝑗=𝑖

𝑟𝑖𝑗

...

𝑘𝑐−𝑚+1∑︁
𝑖=𝑘𝑚+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘𝑐−𝑚+1∑︁
𝑖=𝑘𝑚+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘𝑐−𝑚+1∑︁
𝑖=𝑘𝑚+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗 + · · · · · · +

𝑘𝑐−𝑚+1∑︁
𝑖=𝑘𝑚+1

𝑘𝑐−𝑚+1∑︁
𝑗=𝑖

𝑟𝑖𝑗

...

𝑘𝑐−2∑︁
𝑖=𝑘𝑐−3+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘𝑐−2∑︁
𝑖=𝑘𝑐−3+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘𝑐−2∑︁
𝑖=𝑘𝑐−3+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘𝑐−2∑︁
𝑖=𝑘𝑐−3+1

𝑘𝑐−2∑︁
𝑗=𝑖

𝑟𝑖𝑗

𝑘𝑐−1∑︁
𝑖=𝑘𝑐−2+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘𝑐−1∑︁
𝑖=𝑘𝑐−2+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘𝑐−1∑︁
𝑖=𝑘𝑐−2+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗

𝑘𝑐∑︁
𝑖=𝑘𝑐−1+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘𝑐∑︁
𝑖=𝑘𝑐−1+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗

28

Adding all the above equations by adding all terms vertically, we obtain

𝑘𝑐∑︁
𝑖=𝑘1+1

𝑘𝑐∑︁
𝑗=𝑖

𝐶𝑖𝑗 =

𝑘𝑐∑︁
𝑖=𝑘1+1

𝑘𝑐∑︁
𝑗=𝑖

𝑟𝑖𝑗 +

𝑘𝑐−1∑︁
𝑖=𝑘2+1

𝑘𝑐−1∑︁
𝑗=𝑖

𝑟𝑖𝑗 + · · · +

𝑘𝑐−𝑚+1∑︁
𝑖=𝑘𝑚+1

𝑘𝑐−𝑚+1∑︁
𝑗=𝑖

𝑟𝑖𝑗

= 𝜔c𝑑(𝑘𝑐 − 𝑘1) + 𝜔c𝑑(𝑘𝑐−1 − 𝑘2) + · · · + 𝜔c𝑑(𝑘𝑐−𝑚+1 − 𝑘𝑚)

Hence, graph (a) of figure 3 represents exactly clique potentials that are proportional to the
sum of 𝑚 maximum convex distance functions over all disjoint pairs of random variables of the
clique. �

C Proof of Lemma 2

Lemma 2: At an iteration of our algorithm, given the current labeling 𝑓𝑛 and an interval
𝐼𝑛 = [𝑖𝑛 + 1, 𝑗𝑛], the new labeling 𝑓𝑛+1 obtained by solving the st-mincut problem reduces the
energy by at least the following:

∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓𝑛(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)∪ℬ(𝑓,𝐼𝑛)

𝜃c(xc)

−

⎛⎝ ∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓*(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠
Proof: It is evident from the properties of the graph discussed in subsection 6.2.1 that the
energy of the new labeling 𝑓𝑛+1 is bounded from above by the cost of the 𝑠𝑡-mincut. The cost of
the 𝑠𝑡-mincut itself is bounded from above by the cost of any other 𝑠𝑡-cut in the graph. Consider
one such 𝑠𝑡-cut that gives the following labeling:

𝑓(𝑎) =

{︃
𝑓*(𝑎) 𝑖𝑓 𝑋𝑎 ∈ X(𝑓*, 𝐼𝑛)

𝑓𝑛(𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We can derive the cost of this 𝑠𝑡-cut using the properties of subsection 6.2.1. The energy
of 𝑓 equals the sum of the terms in the properties minus

∑︀
𝑐∈𝒞 𝜅𝑐. The energy of 𝑓𝑛+1 is less

than that of 𝑓 . Hence, the difference between the energy of the current labeling 𝑓𝑛 and the new
labeling 𝑓𝑛+1, i.e 𝐸(𝑓𝑛) − 𝐸(𝑓𝑛+1), is at least

∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓𝑛(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)∪ℬ(𝑓,𝐼𝑛)

𝜃c(xc)

−

⎛⎝ ∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓*(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠
This proves the lemma. �

29

D Proof of Lemma 3

Lemma 3: When 𝑑(.) is linear, that is, 𝑑(𝑥) = |𝑥|, the following inequality holds true:

1

𝐿

∑︁
𝑟

∑︁
𝐼𝑛∈Γ𝑟

⎛⎝ ∑︁
Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠
≤ 𝑚𝑎𝑥

{︂
𝑐

2

(︂
2 +

𝐿

𝑀

)︂
,

(︂
2 +

2𝑀

𝐿

)︂}︂∑︁
c∈𝒞

𝜃c(xc)

(18)

where c is the largest clique in the random field.

Proof: Let us denote the set of optimum labels in a clique Xc arranged in an increasing order
as 𝑙1, 𝑙2....., 𝑙𝑐−1, 𝑙𝑐. For notational simplicity, we introduce a new notation 𝐿 = ℎ′. Since we are
dealing with the truncated linear metric, the terms 𝑡𝑛𝑐 and 𝑠𝑛𝑐 can be simplified as:

𝑡𝑛𝑐 = 𝜔𝑐(𝑙𝑐 − 𝑙1), 𝑠𝑛𝑐 = 𝜔𝑐(𝑙𝑐 − 𝑖𝑛 − 1 + 𝑀) (19)

The LHS of inequality in lemma 3 can be written as:

1

𝐿

∑︁
c∈𝒞

⎛⎝ ∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝑡𝑛𝑐 +
∑︁

ℬ(𝑓,𝐼𝑛)∋c

𝑠𝑛𝑐

⎞⎠ (20)

In order to prove the lemma, we consider the following three cases for each clique Xc:

𝐶𝑎𝑠𝑒− 𝐼 : |𝑙𝑐 − 𝑙1| ≥ 𝐿 and hence 𝜃c(xc) = 𝜔c ·M
In this case, Xc /∈ 𝒜(𝑓, 𝐼𝑛) for all intervals 𝐼𝑛 since the length of each interval is 𝐿. Moreover,

the conditions for Xc ∈ ℬ(𝑓, 𝐼𝑛) are given by

Xc ∈ ℬ(𝑓, 𝐼𝑛) ⇐⇒ 𝑖𝑛 ∈ [𝑙1 − 𝐿, 𝑙𝑐 − 1]

We observe that

∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝑡𝑛𝑐 +
∑︁

ℬ(𝑓,𝐼𝑛)∋c

𝑠𝑛𝑐

≤ 𝜔𝑐

𝑐∑︁
𝑝=1

𝑙𝑝−1∑︁
𝑙𝑝−𝐿

(𝑀 + 𝑙𝑝 − 𝑖𝑛 − 1)

= 𝜔𝑐

𝑐∑︁
𝑝=1

(︂
𝐿 ·𝑀 +

𝐿 · (𝐿− 1)

2

)︂
= 𝐿 · 𝑐

2

(︂
2 +

𝐿− 1

𝑀

)︂
𝜃c(xc)

≤ 𝐿 · 𝑐
2

(︂
2 +

𝐿

𝑀

)︂
𝜃c(xc) (21)

𝐶𝑎𝑠𝑒− 𝐼𝐼 : 𝑀 ≤ |𝑙𝑐 − 𝑙1| < 𝐿 and hence 𝜃c(xc) = 𝜔c ·M
In this case, the conditions for Xc ∈ 𝒜(𝑓, 𝐼𝑛) and 𝑋𝑐 ∈ ℬ(𝑓, 𝐼𝑛) are given by

30

Xc ∈ 𝒜(𝑓, 𝐼𝑛) ⇐⇒ 𝑖𝑛 ∈ [𝑙𝑐 − 𝐿, 𝑙1 − 1]

Xc ∈ ℬ(𝑓, 𝐼𝑛) ⇐⇒ 𝑖𝑛 ∈ [𝑙1 − 𝐿, 𝑙𝑐 − 𝐿− 1] ∪ [𝑙1, 𝑙𝑐 − 1]

We observe that

∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝑡𝑛𝑐 +
∑︁

ℬ(𝑓,𝐼𝑛)∋c

𝑠𝑛𝑐

= 𝜔𝑐

⎛⎝ 𝑙1−1∑︁
𝑖𝑛=𝑙𝑐−𝐿

(𝑙𝑐 − 𝑙1) +

⎧⎨⎩
𝑐−1∑︁
𝑝=1

𝑙𝑝+1−𝐿−1∑︁
𝑖𝑛=𝑙𝑝−𝐿

(𝑀 + 𝑙𝑝 − (𝑖𝑛 + 1))

+

𝑙𝑐−1∑︁
𝑖𝑛=𝑙1

(𝑀 + 𝑙𝑐 − (𝑖𝑛 + 1))

}︃)︃
= 𝜔𝑐 (𝐴 + 𝐵 + 𝐶)

where

𝐴 =

𝑙1−1∑︁
𝑖𝑛=𝑙𝑐−𝐿

(𝑙𝑐 − 𝑙1)

𝐵 =

𝑐−1∑︁
𝑝=1

𝑙(𝑝+1)−𝐿−1∑︁
𝑖𝑛=𝑙𝑝−𝐿

(𝑀 + 𝑙𝑝 − (𝑖𝑛 + 1))

𝐶 =

𝑙𝑐−1∑︁
𝑖𝑛=𝑙1

(𝑀 + 𝑙𝑐 − (𝑖𝑛 + 1))

Let (𝑙𝑐 − 𝑙1) = 𝑟. Hence, we have:

𝐴 = (𝑙𝑐 − 𝑙1) · (𝐿− (𝑙𝑐 − 𝑙1))

= 𝑟 · (𝐿− 𝑟) = 𝐿 · 𝑟 − 𝑟2 (22)

31

𝐵 =

𝑐−1∑︁
𝑝=1

𝑙(𝑝+1)−𝐿−1∑︁
𝑖𝑛=𝑙𝑝−𝐿

(𝑀 + 𝑙𝑝 − (𝑖𝑛 + 1))

=

𝑐−1∑︁
𝑝=1

𝑙(𝑝+1)−𝐿−1∑︁
𝑖𝑛=𝑙𝑝−𝐿

𝑀+

𝑐−1∑︁
𝑝=1

𝑙(𝑝+1)−𝐿−1∑︁
𝑖𝑛=𝑙𝑝−𝐿

(𝑙𝑝 − (𝑖𝑛 + 1))

=

𝑐−1∑︁
𝑝=1

𝑀 · (𝑙(𝑝+1) − 𝑙𝑝)+

𝑐−1∑︁
𝑝=1

{(𝐿− 1) + + (𝐿− (𝑙𝑝+1 − 𝑙𝑝))}

Let 𝑦𝑝 = 𝑙(𝑝+1) − 𝑙𝑝. Clearly
𝑐−1∑︁
𝑝=1

𝑦𝑝 = 𝑙𝑐 − 𝑙1

Hence,

𝐵 = 𝑀 · 𝑟 + 𝐿 · 𝑟 −
𝑐−1∑︁
𝑝=1

𝑦𝑝 · (𝑦𝑝 + 1)

2

= 𝑀 · 𝑟 + 𝐿 · 𝑟 − 𝑟

2
−

𝑐−1∑︁
𝑝=1

(𝑦𝑝)2

2
(23)

𝐶 =

𝑙𝑐−1∑︁
𝑖𝑛=𝑙1

(𝑀 + 𝑙𝑐 − (𝑖𝑛 + 1))

=

𝑙𝑐−1∑︁
𝑖𝑛=𝑙1

𝑀 +

𝑙𝑐−1∑︁
𝑖𝑛=𝑙1

(𝑙𝑐 − (𝑖𝑛 + 1))

= 𝑀 · (𝑙𝑐 − 𝑙1) + {(𝑙𝑐 − (𝑙1 + 1)) + (𝑙𝑐 − (𝑙1 + 2))... + 1}

= 𝑀 · (𝑙𝑐 − 𝑙1) +
(𝑙𝑐 − 𝑙1 − 1)(𝑙𝑐 − 𝑙1)

2

= 𝑀 · 𝑟 +
(𝑟 − 1) · 𝑟

2

= 𝑀 · 𝑟 +
𝑟2

2
− 𝑟

2
(24)

Using (22), (23), (24), we have

32

𝐴 + 𝐵 + 𝐶 = (2𝐿 + 2𝑀 − 𝑟)𝑟 +
𝑟2

2
− 𝑟 −

𝑐−1∑︁
𝑝=1

𝑦2𝑝
2

(25)

We have
𝑐−1∑︁
𝑝=1

𝑦𝑝
2

2
≥ 𝑟2

2(𝑐− 1)

(Taking each 𝑦𝑝 = 𝑟/(𝑐− 1))
Hence,

𝐴 + 𝐵 + 𝐶 ≤
{︂

2𝐿 + 2𝑀 − 1 − 𝑟

2

(︂
𝑐

𝑐− 1

)︂}︂
· 𝑟

Let

𝑓(𝑟) =

{︂
2𝐿 + 2𝑀 − 1 − 𝑟

2

(︂
𝑐

𝑐− 1

)︂}︂
· 𝑟

Taking derivative of 𝑓(𝑟), we obtain

𝑓 ′(𝑟) = 2𝐿 + 2𝑀 − 1 − 𝑟 · 𝑐
(𝑐− 1)

𝑓(𝑟) is a quadratic function which opens downwards (coefficient of 𝑟2 is negative). Also

𝑓 ′(𝐿) =

(︂
𝑐− 2

𝑐− 1

)︂
· 𝐿 + 2𝑀 − 1 > 0

Hence, using 𝑟 = 𝐿,

𝐴 + 𝐵 + 𝐶 < 𝐿 ·
{︂

2𝐿 + 2𝑀 − 1 − 𝐿

2
·
(︂

𝑐

𝑐− 1

)︂}︂
< 𝐿 ·

{︂
2𝐿

𝑀
+ 2 − 𝐿

2𝑀
·
(︂

𝑐

𝑐− 1

)︂}︂
𝜃c(xc) (26)

where the last expression is obtained using the fact that 𝜃c(xc) = 𝜔c ·M.

𝐶𝑎𝑠𝑒− 𝐼𝐼𝐼 : |𝑙𝑐 − 𝑙1| < 𝑀 and hence 𝜃c(xc) = 𝜔c(lc − l1)
In this case, the conditions for Xc ∈ 𝒜(𝑓, 𝐼𝑛) and Xc ∈ ℬ(𝑓, 𝐼𝑛) are given by

Xc ∈ 𝒜(𝑓, 𝐼𝑛) ⇐⇒ 𝑖𝑛 ∈ [𝑙𝑐 − 𝐿, 𝑙1 − 1]

Xc ∈ ℬ(𝑓, 𝐼𝑛) ⇐⇒ 𝑖𝑛 ∈ [𝑙1 − 𝐿, 𝑙𝑐 − 𝐿− 1] ∪ [𝑙1, 𝑙𝑐 − 1]

We observe that

33

∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝑡𝑛𝑐 +
∑︁

ℬ(𝑓,𝐼𝑛)∋c

𝑠𝑛𝑐

= 𝜔𝑐

⎛⎝ 𝑙1−1∑︁
𝑖𝑛=𝑙𝑐−𝐿

(𝑙𝑐 − 𝑙1) +

⎧⎨⎩
𝑐−1∑︁
𝑝=1

𝑙𝑝+1−𝐿−1∑︁
𝑖𝑛=𝑙𝑝−𝐿

(𝑀 + 𝑙𝑝 − (𝑖𝑛 + 1))

+

𝑙𝑐−1∑︁
𝑖𝑛=𝑙1

(𝑀 + 𝑙𝑐 − (𝑖𝑛 + 1))

}︃)︃
= 𝜔𝑐 (𝐴 + 𝐵 + 𝐶)

Similar to case II, we can write

𝐴 + 𝐵 + 𝐶 = (2𝐿 + 2𝑀 − 𝑟/2)𝑟 − 𝑟 −
𝑐−1∑︁
𝑝=1

𝑦2𝑝
2

Since 𝑟 < 𝑀

𝐴 + 𝐵 + 𝐶 ≤ (2𝐿 + 2𝑀)(𝑙𝑐 − 𝑙1)

= 𝐿

(︂
2 +

2𝑀

𝐿

)︂
𝜃c(xc) (27)

where the last expression is obtained using the fact that 𝜃c(xc) = 𝜔c ·M.
Substituting inequalities (21), (26) and (27) in expression (20) and dividing both sides by 𝐿

for all Xc, we obtain inequality of lemma 3. This proves the lemma. �

E Proof of Proposition 3

Proposition 3: The range expansion algorithm with ℎ′ = 𝑀 has a multiplicative bound of
𝑂(𝐶) for truncated max-of-linear model when 𝑚 = 1. The term 𝐶 equals the size of the largest
clique. Hence, if x* is a labeling with minimum energy and x̂ is the labeling estimated by range
expansion algorithm then∑︁

𝑎∈𝒱
𝜃𝑎(�̂�𝑎) +

∑︁
c∈𝒞

𝜃c(x̂c) ≤
∑︁
𝑎∈𝒱

𝜃𝑎(𝑥*
𝑎) + 𝑂(𝐶)

∑︁
c∈𝒞

𝜃c(x*
c).

The above inequality holds for arbitrary set of unary potentials and non-negative clique weights.

Proof: The following equation can be deduced from the above definitions:∑︁
𝑋𝑎∈X

𝜃𝑎(𝑓*(𝑎)) =
∑︁

𝐼𝑛∈ℐ𝑟

∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓*(𝑎)) (28)

since 𝑓*(𝑎) belongs to exactly one interval in 𝐼𝑟 for all 𝑋𝑎.
For the final labeling 𝑓 of the range expansion algorithm, the term in lemma 2 should be

non-positive for all intervals 𝐼𝑛 because 𝑓 is a local optimum. Hence,

34

∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)∪ℬ(𝑓,𝐼𝑛)

𝜃c(xc)

≤

⎛⎝ ∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓*(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠ ,∀𝐼𝑛

We sum the above inequality over all 𝐼𝑛 ∈ Γ𝑟. The summation of the LHS is at least 𝐸(𝑓).
Also, using (28), the summation of the above inequality can be written as:

𝐸(𝑓) ≤
∑︁

𝑋𝑎∈X

𝜃𝑎(𝑓*(𝑎)) +
∑︁

𝐼𝑛∈Γ𝑟

⎛⎝ ∑︁
Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠
We now take the expectation of the above inequality over the uniformly distributed random

integer 𝑟 ∈ [0, 𝐿 − 1]. The LHS of the inequality and the first term on the RHS (that is,∑︀
𝜃𝑎(𝑓*(𝑎))) are constants with respect to 𝑟. Hence, we get

𝐸(𝑓) ≤
∑︁

𝑋𝑎∈X

𝜃𝑎(𝑓*(𝑎)) +
1

𝐿

∑︁
𝑟

∑︁
𝐼𝑛∈Γ𝑟

⎛⎝ ∑︁
Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑐 +
∑︁

Xc∈ℬ(𝑓,𝐼𝑛)

𝑠𝑛𝑐

⎞⎠ (29)

Lemma 3 allows us to write the above inequality as

𝐸(𝑓) ≤
∑︁

𝑋𝑎∈X

𝜃𝑎(𝑓*(𝑎)) + 𝑚𝑎𝑥

{︂
𝑐

2

(︂
2 +

𝐿

𝑀

)︂
,

(︂
2 +

2𝑀

𝐿

)︂}︂∑︁
c∈𝒞

𝜃c(xc) (30)

The R.H.S of lemma 3 is minimum under the following condition:

𝑐

2

(︂
2 +

𝐿

𝑀

)︂
=

(︂
2 +

2𝑀

𝐿

)︂
(31)

The positive solution of the above quadratic equation gives the optimum value 𝐿𝑜𝑝𝑡 of interval
length:

𝐿𝑜𝑝𝑡 =

{︃
2 − 𝑐 +

√
𝑐2 + 4

𝑐

}︃
·𝑀 (32)

However, we bound the minimum value of L as M, giving:

𝐿𝑜𝑝𝑡 = 𝑚𝑎𝑥

{︃{︃
2 − 𝑐 +

√
𝑐2 + 4

𝑐

}︃
·𝑀,𝑀

}︃
(33)

Note 𝐿𝑜𝑝𝑡 equals
√

2𝑀 for 𝑐 = 2 and 𝑀 for 𝑐 > 2. Substituting the optimum value of L
from equation 33 in inequality of lemma 3 and simplifying inequality 12 gives the multiplicative

bound for truncated max-of-linear model as (𝑐+2)+
√
𝑐2+4

2 . Hence, the multiplicative bound is

𝑂(𝑐) where 𝑐 is the size of the maximal clique. For 𝑐 = 2, this gives a bound of 2 +
√

2 using
𝐿 =

√
2𝑀 . �

35

F Proof of Proposition 4

Proposition 4: The range expansion algorithm with ℎ′ = 𝑀 has a multiplicative bound of
𝑂(𝑚 · 𝐶) for truncated max-of-linear model for any general value of 𝑚. The term 𝐶 equals the
size of the largest clique. Hence, if x* is a labeling with minimum energy and x̂ is the labeling
estimated by range expansion algorithm then∑︁

𝑎∈𝒱
𝜃𝑎(�̂�𝑎) +

∑︁
c∈𝒞

𝜃c(x̂c) ≤
∑︁
𝑎∈𝒱

𝜃𝑎(𝑥*
𝑎) + 𝑂(𝑚 · 𝐶)

∑︁
c∈𝒞

𝜃c(x*
c).

The above inequality holds for arbitrary set of unary potentials and non-negative clique
weights.

Proof: We introduce some notations for our proof. Let 𝒜(𝑓, 𝐼𝑛) be the set of all cliques for
which all variables take optimum label in the interval 𝐼𝑛 and ℬ𝑘(𝑓, 𝐼𝑛) where 𝑘 ∈ [1, . . . ,𝑚− 1]
be the set of all cliques for which exactly 𝑘 variables retain their old label. Let ℬ𝑚(𝑓, 𝐼𝑛) be the
set of all cliques for which 𝑚 or more variables retain their old label.

We also introduce the following shorthand notation:

∙ We denote 𝜔c{
∑︀𝑚

𝑖=1 𝑑(𝑝𝑖(x𝑐) − 𝑝𝑐−𝑖+1(x𝑐)} as 𝑡𝑛𝑚,𝑐

∙ We denote 𝜔c{
∑︀𝑚−1

𝑖=2 𝑑(𝑝𝑖(x𝑐) − 𝑝𝑐−𝑖+1(x𝑐) + 𝑑(𝑝𝑐(x𝑐) − 𝑖𝑚 − 1)} + 𝜔c ·𝑀 as 𝑠𝑛1,𝑐

∙ In general, we denote 𝜔c{
∑︀𝑚−𝑘

𝑖=𝑘+1 𝑑(𝑝𝑖(x𝑐)−𝑝𝑐−𝑖+1(x𝑐)+
∑︀𝑘

𝑖=1 𝑑(𝑝𝑐−𝑖+1(x𝑐)−𝑖𝑚−1)}+k·𝜔c·
𝑀 as 𝑠𝑛𝑘,𝑐

We state the following lemma which is a generalization of lemma 2.

Lemma 4. At an iteration of our algorithm, given the current labeling 𝑓𝑛 and an interval
𝐼𝑛 = [𝑖𝑛 + 1, 𝑗𝑛], the new labeling 𝑓𝑛+1 obtained by solving the st-mincut problem reduces the
energy by at least the following:

∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓𝑛(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)∪ℬ1(𝑓,𝐼𝑛)∪···∪ℬ𝑚(𝑓,𝐼𝑛)

𝜃c(xc)

−

⎛⎝ ∑︁
𝑋𝑎∈X(𝑓*,𝐼𝑛)

𝜃𝑎(𝑓*(𝑎)) +
∑︁

Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑚,𝑐 +
∑︁

Xc∈ℬ1(𝑓,𝐼𝑛)

𝑠𝑛1,𝑐 + · · · +
∑︁

Xc∈ℬ𝑚(𝑓,𝐼𝑛)

𝑠𝑛𝑚,𝑐

⎞⎠

We also make use of the following lemma which generalizes lemma 3:

Lemma 5. When 𝑑(.) is linear, that is, 𝑑(𝑥) = |𝑥|, the following inequality holds true:

1

𝐿

∑︁
𝑟

∑︁
𝐼𝑛∈Γ𝑟

⎛⎝ ∑︁
Xc∈𝒜(𝑓,𝐼𝑛)

𝑡𝑛𝑚,𝑐 +
∑︁

Xc∈ℬ1(𝑓,𝐼𝑛)

𝑠𝑛1,𝑐 + · · · +
∑︁

Xc∈ℬ𝑚(𝑓,𝐼𝑛)

𝑠𝑛𝑚,𝑐

⎞⎠
≤ 𝑚𝑎𝑥

{︂
𝑚 · 𝑐

2

(︂
2 +

𝐿

𝑀

)︂
,

(︂
2 +

2𝑀

𝐿

)︂}︂∑︁
c∈𝒞

𝜃c(xc)

(34)

where c is the largest clique in the random field.

36

Let us denote the set of optimum labels in a clique Xc arranged in an increasing order as
𝑙1, 𝑙2....., 𝑙𝑐−1, 𝑙𝑐. Since we are dealing with the truncated linear metric, the terms 𝑡𝑛𝑚,𝑐 and 𝑠𝑛𝑘,𝑐
can be simplified as:

𝑡𝑛𝑚,𝑐 = 𝜔𝑐{(𝑙𝑐 − 𝑙1) + (𝑙𝑐−1 − 𝑙2) + · · · + (𝑙𝑐−𝑚+1 − 𝑙𝑚)}
𝑠𝑛1,𝑐 = 𝜔𝑐{(𝑙𝑐 − 𝑖𝑛 − 1 + 𝑀) + (𝑙𝑐−1 − 𝑙2) + · · · + (𝑙𝑐−𝑛+1 − 𝑙𝑛)}

...

𝑠𝑛𝑚,𝑐 = 𝜔𝑐{(𝑙𝑐 − 𝑖𝑛 − 1 + 𝑀) + (𝑙𝑐−1 − 𝑖𝑛 − 1 + 𝑀) + · · · + (𝑙𝑐−𝑛+1 − 𝑖𝑛 − 1 + 𝑀)}

Since the labels are sorted in ascending order {𝑙1, . . . , 𝑙𝑐}, it follows that

𝑡𝑛𝑚,𝑐 ≤ 𝜔𝑐 ·𝑚 · {𝑙𝑐 − 𝑙1}
𝑠𝑛1,𝑐 ≤ 𝜔𝑐 ·𝑚 · {𝑙𝑐 − 𝑖𝑛 − 1 + 𝑀}

...

𝑠𝑛𝑚,𝑐 ≤ 𝜔𝑐 ·𝑚 · {𝑙𝑐 − 𝑖𝑛 − 1 + 𝑀}

The LHS of inequality in lemma 5 can be written as:

1

𝐿

∑︁
c∈𝒞

⎛⎝ ∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝑡𝑛𝑚,𝑐 +
∑︁

ℬ1(𝑓,𝐼𝑛)∋c

𝑠𝑛1,𝑐 + · · · +
∑︁

ℬ𝑚(𝑓,𝐼𝑛)∋c

𝑠𝑛𝑚,𝑐

⎞⎠
≤ 1

𝐿

∑︁
c∈𝒞

⎛⎝ ∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝜔𝑐 ·𝑚 · {𝑙𝑐 − 𝑙1} +
∑︁

ℬ1(𝑓,𝐼𝑛)∋c

𝜔𝑐 ·𝑚 · {𝑙𝑐 − 𝑖𝑛 − 1 + 𝑀} + . . .

+
∑︁

ℬ𝑚(𝑓,𝐼𝑛)∋c

𝜔𝑐 ·𝑚 · {𝑙𝑐 − 𝑖𝑛 − 1 + 𝑀}

⎞⎠
≤ 1

𝐿

∑︁
c∈𝒞

⎛⎝ ∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝜔𝑐 ·𝑚 · {𝑙𝑐 − 𝑙1} +
∑︁

ℬ1(𝑓,𝐼𝑛)∪···∪ℬ𝑚(𝑓,𝐼𝑛)∋c

𝜔𝑐 ·𝑚 · {𝑙𝑐 − 𝑖𝑛 − 1 + 𝑀}

⎞⎠
= 𝑚 · 1

𝐿

∑︁
c∈𝒞

⎛⎝ ∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝜔𝑐 · 𝑡𝑛𝑐 +
∑︁

ℬ(𝑓,𝐼𝑛)∋c

𝜔𝑐 · 𝑠𝑛𝑐

⎞⎠

(35)

The last expression in equation 35 is 𝑚 times expression 20. The analysis below follows the
same steps as in lemma 3.

In order to prove the lemma, we consider the following three cases for each clique Xc:

𝐶𝑎𝑠𝑒− 𝐼 : |𝑙𝑐 − 𝑙1| ≥ 𝐿 and hence 𝜔𝑐 ·𝑀 ≤ 𝜃c(xc) ≤ 𝜔𝑐 ·𝑚 ·𝑀
This results in

37

𝑚 · 1

𝐿

∑︁
c∈𝒞

⎛⎝ ∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝜔𝑐 · 𝑡𝑛𝑐 +
∑︁

ℬ(𝑓,𝐼𝑛)∋c

𝜔𝑐 · 𝑠𝑛𝑐

⎞⎠ ≤ 𝑚 · 𝑐
2

(︂
2 +

𝐿

𝑀

)︂
𝜔𝑐 ·𝑀

≤ 𝑚 · 𝑐
2

(︂
2 +

𝐿

𝑀

)︂
𝜃c(xc) (36)

𝐶𝑎𝑠𝑒− 𝐼𝐼 : 𝑀 ≤ |𝑙𝑐 − 𝑙1| < 𝐿 and hence 𝜔𝑐 ·𝑀 ≤ 𝜃c(xc) ≤ 𝜔𝑐 ·𝑚 ·𝑀
This gives

𝑚 · 1

𝐿

∑︁
c∈𝒞

⎛⎝ ∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝜔𝑐 · 𝑡𝑛𝑐 +
∑︁

ℬ(𝑓,𝐼𝑛)∋c

𝜔𝑐 · 𝑠𝑛𝑐

⎞⎠ ≤ 𝑚 ·
{︂

2𝐿

𝑀
+ 2 − 𝐿

2𝑀
·
(︂

𝑐

𝑐− 1

)︂}︂
𝜔𝑐 ·𝑀

≤ 𝑚 ·
{︂

2𝐿

𝑀
+ 2 − 𝐿

2𝑀
·
(︂

𝑐

𝑐− 1

)︂}︂
𝜃c(xc) (37)

𝐶𝑎𝑠𝑒− 𝐼𝐼𝐼 : |𝑙𝑐 − 𝑙1| < 𝑀 and hence 𝜔𝑐(𝑙𝑐 − 𝑙1) ≤ 𝜃c(xc) ≤ 𝑚 · 𝜔𝑐(𝑙𝑐 − 𝑙1)
This leads to
oo

𝑚 · 1

𝐿

∑︁
c∈𝒞

⎛⎝ ∑︁
𝒜(𝑓,𝐼𝑛)∋c

𝜔𝑐 · 𝑡𝑛𝑐 +
∑︁

ℬ(𝑓,𝐼𝑛)∋c

𝜔𝑐 · 𝑠𝑛𝑐

⎞⎠ ≤ 𝑚 · (2𝐿 + 2𝑀)(𝑙𝑐 − 𝑙1)

≤ 𝑚 · 𝐿
(︂

2 +
2𝑀

𝐿

)︂
𝜃c(xc) (38)

Substituting inequalities (36), (37) and (38) in expression (35), we obtain inequality of lemma
5. This proves the lemma. �

Making use of lemmas 4 and 5, the proof of proposition 4 follows exactly the same steps as
that of proposition 3.

References

[1] C. Arora and S. Maheshwari. Multi label generic cuts: Optimal infernce in multi label multi clique
MRF-MAP problems. In CVPR, 2014. 3

[2] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for
energy minimization in vision. PAMI, 2004. 2, 9

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI,
2001. 1, 3, 4

[4] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approximation algorithms for the metric labeling
problem via a new linear programming formulation. In SODA, 2001. 1, 4, 14

[5] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis.
PAMI, 2002. 21, 22

[6] A. Delong, L. Gorelick, O. Veksler, and Y. Boykov. Minimizing energies with hierarchical costs.
IJCV, 2012. 3

[7] A. Delong, A. Osokin, H. Isack, and Y. Boykov. Fast approximate energy minimization with label
costs. In CVPR, 2010. 3

38

[8] P. Dokania and M. P. Kumar. Parsimonious labeling. In ICCV, 2015. 3, 14, 15, 21, 22, 23

[9] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient belief propagation for early vision.
IJCV, 2006. 3

[10] A. Fix, C. Wang, and R. Zabih. A primal-dual algorithm for higher-order multilabel Markov random
fields. In CVPR, 2014. 3

[11] S. Gould, F. Amat, and D. Koller. Alphabet soup: A framework for approximate energy minimiza-
tion. In CVPR, 2009. 3

[12] A. Gupta and E. Tardos. A constant factor approximation algorithm for a class of classification
problems. In STOC, 2000. 1, 4

[13] H. Ishikawa. Exact optimization for Markov random fields with convex priors. PAMI, 2003. 9, 25

[14] Stefanie Jegelka and Jeff Bilmes. Submodularity beyond submodular energies: coupling edges in
graph cuts. In CVPR, 2011. 3

[15] P. Kohli, M. P. Kumar, and P. Torr. P3 & beyond: Solving energies with higher order cliques. In
CVPR, 2007. 3, 5

[16] P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label consistency.
In CVPR, 2008. 3, 5

[17] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI, 2006.
1, 4

[18] V. Kolmogorov. Minimizing a sum of submodular functions. Discrete Applied Mathematics, 2012.
3

[19] Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI,
2006. 3

[20] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual decomposition: Message-
passing revisited. In ICCV, 2007. 1, 4

[21] N. Komodakis, G. Tziritas, and N. Paragios. Fast, approximately optimal solutions for single and
dynamic MRFs. In CVPR, 2007. 1, 4

[22] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. Mrf optimization via dual decomposition:
Message-passing revisited. In ICCV, 2007. 3

[23] M. P. Kumar and P. Torr. Improved moves for truncated convex models. In NIPS, 2008. 4

[24] M Pawan Kumar, Olga Veksler, and Philip HS Torr. Improved moves for truncated convex models.
JMLR, 2011. 1

[25] L. Ladicky, C. Russell, P. Kohli, and P. Torr. Graph cut based inference with co-occurrence statistics.
In ECCV, 2010. 3, 14, 15, 21, 22, 23

[26] Ofer Meshi, David Sontag, Tommi S. Jaakkola, and Amir Globerson. Learning efficiently with
approximate inference via dual losses. In ICML, 2010. 3

[27] David Sontag, Talya Meltzer, Amir Globerson, Tommi S Jaakkola, and Yair Weiss. Tightening LP
relaxations for map using message passing. In UAI, 2008. 1

[28] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and
C. Rother. A comparative study of energy minimization methods for Markov random fields with
smoothness-based priors. PAMI, 2008. 1, 2

[29] Daniel Tarlow, Inmar E Givoni, and Richard S Zemel. Hop-map: Efficient message passing with
high order potentials. In AISTATS, 2010. 3

[30] O. Veksler. Graph cut based optimization for MRFs with truncated convex priors. In CVPR, 2007.
1, 4

[31] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. MAP estimation via agreement
on trees: message-passing and linear programming. IEEE Trans. Information Theory, 2005. 3

39

