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1. Detailed Network Architectures

We provide the detailed network architecture of our ap-
proach in Figure 1.

2. More examples

We provide more visual examples for car and chair cat-
egories in Figures 2 and 3 respectively. In addition to novel
views synthesized by our method, we also provide the in-
termediate output (visibility map and output of DOAFN) as
well as views synthesized by other approaches.

3. Test results on random backgrounds

Figure 4 presents test results on synthesized images with
random backgrounds. Intermediate stages, such as visibility
map, background mask, and outputs of DOAFN are also
shown. We compare against L1 and AFN baselines. Note
that L1 and AFN could perform better on background area
if we applied similar approaches used in TVSN, which we
considered backgrounds separately.

4. Arbitrary transformations with linear inter-
polations of one-hot vectors

We show an experiment on the generalization capabil-
ity for arbitrary transformations. Although we have trained
the network with 17 discrete transformations in the range
[20,340] with 20-degree increments, our trained network
can synthesize arbitrary view points with linear interpola-
tions of one-hot vectors. For example, if [0,1,0,0,...0] and
[0,0,1,0,...0] represent 40 and 60-degree transformations re-
spectively, [0,0.5,0.5,0,...0] represents 50 degree. More for-
mally, let t ∈ [0, 1]17 be encoding vector for the transfor-
mation parameter θ ∈ [20, 340] and s be step size (s = 20).
For a transformation parameter i × s ≤ θ < (i + 1) × s, i
and i+ 1 elements of the encoding vector t is

ti = 1− θ − (i× s)
s

, ti+1 = 1− ti (1)

Figure 5 shows some of examples. From the third to the
sixth columns, we used linearly interpolated one-hot vectors
to synthesize views between two consecutive discrete views
that were in the original transformation set (the second and
the last columns).

5. More categories
We picked cars and chairs, since both span a range of

interesting challenges. The car category has rich variety of
reflectance and textures, various shapes, and a large num-
ber of instances. The chair category was chosen since it is
a good testbed for challenging ‘thin shapes’, e.g. legs of
chairs, and unlike cars is far from convex in shape. We also
wanted to compare to previous works, which were tested
mostly on cars or chairs. In order to show our approach is
well generalizable to other categories, we also performed
experiments for motorcycle and flowerpot categories. We
followed the same experimental setup. We used the en-
tire motocycle(337 models) and flowerpot(602 models) cat-
egories. For each category, 80% of 3D models are used
for training, which leaves around 0.1 million training pairs
for the motorcycle and 0.2 million for the flowerpot cate-
gory. For testing, we randomly sampled instances, input
viewpoints, and desired transformations from the rest 20%
of 3D models. Figure 6 shows some of qualitative results.
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Figure 1. Transformation-grounded view synthesis network architecture



Figure 2. Results on test images from the car category [1]. 1st-input, 2nd-ground truth. From 3rd to 6th are deep encoder-decoder networks
with different losses. (3rd-L1 norm [8], 4th-feature reconstruction loss with pretrained VGG16 network [3, 5, 9, 4], 5th-adversarial loss
with feature matching [2, 6, 7], 6th-the combined loss). 7th-appearance flow network (AFN) [10]. 8th-ours(TVSN).



Figure 3. Results on test images from the car category [1]. 1st-input, 2nd-ground truth. From 3rd to 6th are deep encoder-decoder networks
with different losses. (3rd-L1 norm [8], 4th-feature reconstruction loss with pretrained VGG16 network [3, 5, 9, 4], 5th-adversarial loss
with feature matching [2, 6, 7], 6th-the combined loss). 7th-appearance flow network (AFN) [10]. 8th-ours(TVSN).



Figure 4. Test results on synthetic backgrounds



Figure 5. Test results of linear interpolation of one-hot vectors



Figure 6. Test results of motorcycle and flowerpot categories


