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1. Content
In the supplementary material we provide additional

quantitative and qualitative results. In details:

• Section 2 provides additional quantitative results for
DAVIS, YoutubeObjects, and SegTrackv-2 (see Tables
S1 - S4).

• Detailed attribute-based evaluation is reported in Sec-
tion 3 and Table S5.

• The dataset specific tuning for additional ingredients is
described in Section 4.

• Additional qualitative results with first frame box and
segment supervision are presented in Section 5 and
Figure S1.

• Examples of mask generation for the extra input chan-
nel are shown in Section 6 and Figure S2.

• Examples of optical flow magnitude images are pre-
sented in Section 7 and Figure S3.

2. Additional quantitative results
In this section we present additional quantitative results

for three different datasets: DAVIS [8], YoutubeObjects
[10], and SegTrackv-2 [5].
DAVIS Table S1 presents a more detailed evaluation on
DAVIS using evaluation metrics proposed in [8]. Three
measures are used: region similarity in terms of intersec-
tion over union (J), contour accuracy (F), and temporal in-
stability of the masks (T). We outperform the competitive
methods on all three measures.

We present the per-sequence comparison with other
state-of-the-art methods on DAVIS in Table S2.

∗The first two authors contributed equally.

SegTrack-v2 Table S3 reports the per-sequence compari-
son with other state-of-the-art methods on SegTrack-v2.

YoutubeObjects The per-category comparison with other
state-of-the-art methods on YoutubeObjects is shown in Ta-
ble S4.

3. Attribute-based evaluation

Table S5 presents a more detailed evaluation on DAVIS
using video attributes.

The attribute based evaluation shows that our generic
model, MaskTrack, is robust to various video challenges
present in DAVIS. It compares favourably on any subset
of videos sharing the same attribute, except camera-shake,
where ObjFlow [12] marginally outperforms our approach.

We observe that MaskTrack handles well fast-motion,
appearance change and out-of-view, where competitive
methods are failing [6, 12].

Furthermore, incorporating optical flow information
and CRF post-processing into MaskTrack substan-
tially increases robustness on all categories, reaching
over 70% mIoU on each subcategory. In particular,
MaskTrack+Flow+CRF better discriminates cases of low
resolution, scale-variation and appearance change.

4. Dataset specific tuning

By adding additional ingredients specifically tuned for
different datasets, such as optical flow and CRF post-
processing, we can push the results even further, reaching
80.3 mIoU on DAVIS, 72.6 on YoutubeObjects and 70.3 on
SegTrackv-2. In this section we discuss the dataset specific
tuning.

Optical flow Although optical flow can provide interesting
gains, we found it to be brittle when going across differ-
ent datasets. Therefore we explored different strategies to
handle optical flow.



Method
DAVIS, mIoU

J F T

Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓ Mean ↓

Box oracle 45.1 39.7 -0.7 21.4 6.7 1.8 1.0
Grabcut oracle 67.3 76.9 1.5 65.8 77.2 2.9 34.0

NLC [3] 64.1 73.1 8.6 59.3 65.8 8.6 35.8
FCP [9] 63.1 77.8 3.1 54.6 60.4 3.9 28.5
BVS [6] 66.5 76.4 26.0 65.6 77.4 23.6 31.6

ObjFlow [12] 71.1 80.0 22.7 67.9 78.0 24.0 22.1
MaskTrack 74.8 87.8 14.1 75.0 84.7 14.3 18.3

MaskTrack+Flow+CRF 80.3 93.5 8.9 75.8 88.2 9.5 18.3

Table S1: Comparison of segment tracking results on DAVIS. Our model improves over previous results.

Sequence Method, mIoU
BVS [6] ObjFlow [12] TRS [13] MaskTrack

bird of paradise 89.7 87.1 90.0 84.0
birdfall 65.3 52.9 72.5 56.6
bmx#1 67.1 87.9 86.1 81.9
bmx#2 3.2 4.0 40.3 0.1
cheetah#1 5.4 25.9 61.2 69.3
cheetah#2 9.2 37.2 39.4 17.4
drift#1 68.5 77.9 70.7 47.4
drift#2 32.7 27.4 70.7 70.9
frog 76.1 78.4 80.2 85.3
girl 86.5 84.2 86.4 86.8
hummingbird#1 53.2 67.2 53.0 39.0
hummingbird#2 28.7 68.5 70.5 49.6
monkey 85.7 87.8 83.1 89.3
monkeydog#1 40.5 47.1 74.0 25.3
monkeydog#2 17.1 21.0 39.6 31.7
parachute 93.7 93.3 95.9 93.7
penguin#1 81.6 80.4 53.2 93.7
penguin#2 82.0 83.5 72.9 85.2
penguin#3 78.5 83.9 74.4 90.1
penguin#4 76.4 86.2 57.2 90.5
penguin#5 47.8 82.3 63.5 78.4
penguin#6 84.3 87.3 65.7 89.3
soldier 55.3 86.8 76.3 82.0
worm 65.4 83.2 82.4 80.4
Mean 58.4 67.5 69.1 67.4

Table S3: Per-sequence results on the SegTrack-v2 dataset.

Given a video sequence we compute the optical flow us-
ing EpicFlow [11] with Flow Fields matches [1] and convo-
lutional boundaries [7]. In parallel to the MaskTrack with
RGB images, we proceed to compute a second output mask
using the magnitude of the optical flow field as input image
(replicated into a three channel image). We then fuse by av-
eraging the output scores given by the two parallel networks

Category Method, mIoU
BVS [6] ObjFlow [12] MaskTrack

aeroplane 80.8 85.3 81.6
bird 76.4 83.1 82.9
boat 60.1 70.6 74.7
car 56.7 68.8 66.9
cat 52.7 60.6 69.6
cow 64.8 71.5 75.0
dog 61.6 71.6 75.2
horse 53.1 62.3 64.9
motorbike 41.6 59.9 49.8
train 62.1 74.7 77.7
Mean per object 59.7 70.1 71.7
Mean per class 61.0 70.9 71.9

Table S4: Per-category results on the YoutubeObjects
dataset.

(using RGB image and optical flow magnitude as inputs).
For DAVIS we use the original MaskTrack model

(trained with RGB images) as-is, without retraining. How-
ever, this strategy fails on YoutubeObjects and SegTrackv-
2, mainly due to the failure modes of the optical flow algo-
rithm and its sensitivity to the video data quality. To over-
come this limitation we additionally trained the MaskTrack
model using optical flow magnitude images on video data
instead of RGB images. Training on optical flow magni-
tude images helps the network to be robust to the optical
flow errors during the test time and provides a marginal im-
provement on YoutubeObjects and SegTrackv-2.

Overall integrating optical flow on top of MaskTrack

provides 1∼4% on each dataset.

CRF post-processing As have been shown in [2] adding
on top a well-tuned post-processing CRF [4] can gain a
couple of mIoU points. Therefore following [2] we cross-
validate the parameters of the fully connected CRF per each
dataset based on the available first frame segment anno-



Sequence Method, mIoU
BVS [6] ObjFlow [12] MaskTrack MaskTrack+Flow+CRF

bear 95.5 94.6 92.8 93.1
blackswan 94.3 94.7 91.9 90.3
bmx-bumps 43.4 48.0 39.6 57.1
bmx-trees 38.2 14.9 32.1 57.5
boat 64.4 80.8 78.2 54.7
breakdance 50.0 49.6 59.4 76.1
breakdance-flare 72.7 76.5 89.2 77.6
bus 86.3 68.2 79.1 89.0
camel 66.9 86.7 80.4 80.1
car-roundabout 85.1 90.0 82.8 96.0
car-shadow 57.8 84.6 90.3 93.5
car-turn 84.4 87.6 92.3 88.6
cows 89.5 91.0 91.9 88.2
dance-jump 74.5 80.4 66.2 78.8
dance-twirl 49.2 56.7 67.8 84.4
dog 72.3 89.7 86.8 90.8
dog-agility 34.5 86.0 83.7 78.9
drift-chicane 3.3 17.5 0.5 86.2
drift-straight 40.2 31.4 46.0 56.0
drift-turn 29.9 3.5 86.5 86.0
elephant 84.9 87.9 91.4 87.2
flamingo 88.1 87.3 70.9 79.0
goat 66.1 86.5 85.8 84.5
hike 75.5 93.4 74.5 93.1
hockey 82.9 85.0 84.0 83.4
horsejump-high 80.1 86.2 78.4 81.8
horsejump-low 60.1 82.2 79.6 80.6
kite-surf 42.5 70.2 58.7 60.0
kite-walk 87.0 85.0 77.4 64.5
libby 77.6 59.4 78.8 77.5
lucia 90.1 89.7 88.4 91.1
mallard-fly 60.6 55.0 56.7 57.2
mallard-water 90.7 89.9 91.0 90.4
motocross-bumps 40.1 48.5 53.9 59.9
motocross-jump 34.1 59.4 69.0 68.3
motorbike 56.3 47.8 46.5 56.7
paragliding 87.5 94.7 93.2 95.9
paragliding-launch 64.0 63.7 58.9 62.1
parkour 75.6 86.1 85.3 88.2
rhino 78.2 89.5 93.2 91.1
rollerblade 58.8 88.6 33.0 78.7
scooter-black 33.7 76.5 64.9 82.4
scooter-gray 50.8 29.6 81.7 82.9
soapbox 78.9 68.9 86.1 89.9
soccerball 84.4 8.0 85.8 89.0
stroller 76.7 87.7 86.2 85.4
surf 49.2 95.6 92.6 92.8
swing 78.4 60.4 80.7 81.9
tennis 73.7 81.8 87.3 86.2
train 87.2 91.7 90.8 90.4
Mean 66.5 71.1 74.8 80.3

Table S2: Per-sequence results on the DAVIS dataset.



B
ox

Se
gm

en
t

B
ox

Se
gm

en
t

B
ox

Se
gm

en
t

B
ox

Se
gm

en
t

B
ox

Se
gm

en
t

B
ox

Se
gm

en
t

1st frame annotation Results with MaskTrackBox and MaskTrack, the frames are chosen equally distant based on the video sequence length

Figure S1: Qualitative results of MaskTrackBox and MaskTrack on Davis using 1st frame annotation supervision (box or
segment). By propagating annotation from the 1st frame, either from segment or just bounding box annotations, our system
generates results comparable to ground truth.



Attribute Method, mIoU
BVS [6] ObjFlow [12] MaskTrack MaskTrack+Flow MaskTrack+Flow+CRF

Appearance change 0.46 0.54 0.65 0.75 0.76
Background clutter 0.63 0.68 0.77 0.78 0.79
Camera-shake 0.62 0.72 0.71 0.77 0.78
Deformation 0.7 0.77 0.77 0.78 0.8
Dynamic background 0.6 0.67 0.69 0.75 0.76
Edge ambiguity 0.58 0.65 0.68 0.74 0.74
Fast-motion 0.53 0.55 0.66 0.74 0.75
Heterogeneous object 0.63 0.66 0.71 0.77 0.79
Interacting objects 0.63 0.68 0.74 0.75 0.77
Low resolution 0.59 0.58 0.6 0.75 0.77
Motion blur 0.58 0.6 0.66 0.72 0.74
Occlusion 0.68 0.66 0.74 0.75 0.77
Out-of-view 0.43 0.53 0.66 0.71 0.71
Scale variation 0.49 0.56 0.62 0.72 0.73
Shape complexity 0.67 0.69 0.71 0.72 0.75

Table S5: Attribute based evaluation on DAVIS.

Annotated image Example training masks

Figure S2: Examples of training mask generation. From one annotated image, multiple training masks are generated. The
generated masks mimic plausible object shapes on the preceding frame.
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Figure S3: Examples of optical flow magnitude images for different datasets.

tations of all video sequences. We employ coarse-to-fine
search scheme for tuning CRF parameters and fix the num-
ber of mean field iterations to 10. We apply the CRF on
a temporal window of 3 frames to improve the temporal
stability of the results. The color (RGB) and the spatio-
temporal (XYT) standard deviation of the appearance ker-
nel are set, respectively, to 10 and 5. The pairwise term
weight is set to 5. We employ an additional smoothness
kernel to remove small isolated regions. Both its weight
and the spatial (XY) standard deviation are set to 1.

5. Additional qualitative results

In this section we provide additional qualitative results
for the MaskTrackBox and MaskTrack systems. Figure S1
shows the video object segmentation results when consider-
ing different types of annotations on DAVIS. Starting from
segment annotations or even only from box annotations on
the first frame, our model generates high quality segmenta-
tions, making the system suitable for diverse applications.

6. Examples of training mask generation

In the main paper we show that the main factor affecting
the quality is using any form of mask deformations when
creating the training samples (both for offline and online
training). The mask deformation ingredient is crucial for
our MaskTrack approach, making the segmentation estima-
tion more robust at test time to the noise in the input mask.
Figure S2 shows examples of generated masks using affine
transformation as well as non-rigid deformations via thin-
plate splines.

7. Examples of optical flow magnitude images

We propose to employ optical flow magnitude as a
source of additional information to guide the segmentation.
The flow magnitude roughly looks like a gray-scale ob-
ject and captures useful object shape information, therefore
complementing the MaskTrack model with RGB images
as inputs. Examples of optical flow magnitude images are
shown in Figure S3.
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