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Preface. In this supplemental material we give a proof for
A(yn) and R(yn) being linearly uncorrelated. We, further-
more, give additional details on our novel heteroscedastic
Tobit regression model (derivation, log-likelihood and its
gradient) and highlight the importance of considering clip-
ping of the noisy observations. Finally, we show additional
results from our denoising benchmark.

A. Linear Correlation of A(yn) and R(yn)

Proposition 1. The debiased image A(yn) and the debi-
ased residual image R(yn) are linearly uncorrelated.

Proof. First, we note that the expectation of R(yn) given
A(yn) is zero

E [R(yn) | A(yn)]

= E [A(yn)− xn | A(yn)] (15a)
= E [A(yn) | A(yn)]− E [xn | A(yn)] (15b)
= A(yn)− E [xn | yn] (15c)
= 0, (15d)

where the third equality follows from the fact that A(·)
is invertible [11]. Next, we observe that for two ran-
dom variables X and Y , the expectation of X is zero if
E [X | y = Y ] = 0 for all y:

E [X] = EY
[
EX|Y [X]

]
= EY [0] = 0. (16)

We now show that two random variablesX and Y have zero
covariance if E [X | y = Y ] = 0 for all y:

Cov(X,Y ) = E
[
(X − EX)(Y − EY )

]
(17)

= E
[
X(Y − EY )

]
(18)

= E [XY ]− EX · EY (19)

= EY
[
EX|Y [XY ]

]
(20)

= EY
[
Y · EX|Y [X]

]
(21)

= EY [Y · 0] (22)

= 0. (23)

From the definition of the linear correlation coefficient it
follows that zero covariance between two random variables
implies that they are linearly uncorrelated.

B. Heteroscedastic Tobit Regression

We now derive the log-likelihood and its gradient of the
proposed heteroscedastic Tobit regression model (Eqs. 8–
9b in the paper). Moreover, we detail the approximation of
the noise term of Eqs. (7a) – (7b) of the main paper. For
clarity, we denote α(xr) = α>x

.
= x̃, where x = [xr, 1]>.

B.1. Log-likelihood

Before deriving the log-likelihood of Eq. (8), let us first
look at the theoretical case of unclipped intensities x′n in the
high-ISO image:

x′n = x̃+ εr,n(x̃). (24)

Following Eq. (9a) of the main paper, the conditional dis-
tribution of x′n given the intensities in x̃ is given as a het-
eroscedastic Gaussian:

p(x′n | xr) = N
(
x′n | x̃, σr,n(x̃)

)
. (25)

We now consider the clipped noisy signal xn. To derive
its conditional distribution in case that xn is clipped, we
replace the Gaussian PDF with Dirac deltas weighted by
the probability mass of all possible values x′n that would be
clipped to xn. Hence, the conditional distribution is given
by a case distinction on whether xn is unclipped, clipped
from below, or from above, respectively. Precisely, we can
write

T (xn | xr) =



N
(
xn | x̃, σr,n(x̃)

)
,

if 0<xn<1

δ(xn) ·
∫ 0

−∞N
(
x′n | x̃, σr,n(x̃)

)
dx′n,

if xn≤0

δ(1− xn) ·
∫∞
1
N
(
x′n | x̃, σr,n(x̃)

)
dx′n,

if xn≥1.
(26)
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It is easy to check that T (xn | xr) indeed is a valid proba-
bility distribution. Obviously, T (xn | xr) ≥ 0 and∫

R
T (xn | xr) dxn =

∫ 0

−∞
T (xn | xr) dxn (27a)

+

∫ 1

0

T (xn | xr) dxn +

∫ ∞
1

T (xn | xr) dxn

=

∫ 0

−∞
N
(
x′n | x̃, σr,n(x̃)

)
dx′n (27b)

+

∫ 1

0

N
(
xn | x̃, σr,n(x̃)

)
dxn

+

∫ ∞
1

N
(
x′n | x̃, σr,n(x̃)

)
dx′n

= 1. (27c)

By denoting the cumulative distribution function of a stan-
dard normal distribution as Ψ(z) =

∫ z
−∞N (z′ | 0, 1) dz′

and by noting that Ψ
(
z−µ
σ

)
=
∫ z
−∞N (z′ | µ, σ) dz′, we

can write the log-likelihood of T (xn | xr) up to constants
as

log T (xn | xr) =



− log σr,n(x̃)− (xn−x̃)2
2σr,n(x̃)2

,

if 0<xn<1

δ(xn) · log Ψ
(
−x̃

σr,n(x̃)

)
,

if xn≤0

δ(1− xn) · log
(

1−Ψ
(

1−x̃
σr,n(x̃)

))
,

if xn≥1.
(28)

For constant σr,n(x̃) = σr,n (i.e., stationary noise) this
is the log-likelihood of Tobit regression with clipping at 0
from below and at 1 from above [35]. In our special case,
we use a non-constant link function for the standard devia-
tion, i.e.

σr,n(x̃) =
√
βr,n1 x̃+ βr,n2 (29a)

=
√

(βr1 + βn1 )x̃+ βr2 + βn2 (29b)

in order to define our heteroscedastic Tobit regression
model.

To estimate its parameters, we minimize the negative
log-likelihood of all data points

(α̂, β̂) = arg min
α,βr,n

∑
i

− log T
(
x(i)n | x(i)r

)
. (30)

B.2. Log-likelihood Gradient

It is useful to first derive the partial derivatives of terms
of the form (c−x̃)/σr,n(x̃) for some constant c w.r.t. all vari-
ables. The partial derivatives can be shown to be given as:

∂(c−x̃)/σr,n(x̃)

∂βr,n1

=

− 1

2

(
c−α>x

)
·
(
βr,n1 α>x + βr,n2

)−3/2 ·α>x

(31a)

∂(c−x̃)/σr,n(x̃)

∂βr,n2

=

− 1

2

(
c−α>x

)
·
(
βr,n1 α>x + βr,n2

)−3/2
(31b)

∂(c−x̃)/σr,n(x̃)

∂α
= −x ·

(
βr,n1 α>x + βr,n2

)−1/2

− 1

2

(
c−α>x

)
·
(
βr,n1 α>x + βr,n2

)−3/2 · βr,n1 x.

(31c)

That allows to derive the partial derivatives for all three
cases of the log-likelihood function. For the first case they
are given as

∂ logN
(
xn | x̃, σr,n(x̃)

)
∂βr,n1

=

− 1

2

(
βr,n1 α>x + βr,n2

)−1 ·α>x
− xn −α>x√

βr,n1 α>x + βr,n2

· ∂
(xn−x̃)/σr,n(x̃)

∂βr,n1

(32a)

∂ logN
(
xn | x̃, σr,n(x̃)

)
∂βr,n2

=

− 1

2

(
βr,n1 α>x + βr,n2

)−1
− xn −α>x√

βr,n1 α>x + βr,n2

· ∂
(xn−x̃)/σr,n(x̃)

∂βr,n2

(32b)

∂ logN
(
xn | x̃, σr,n(x̃)

)
∂α

=

− 1

2

(
βr,n1 α>x + βr,n2

)−1 · βr,n1 x

− xn −α>x√
βr,n1 α>x + βr,n2

· ∂
(xn−x̃)/σr,n(x̃)

∂α
. (32c)

To compute the last term of each equation we employ
Eqs. (31a) – (31c). For the second case the gradient of the
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Applied on Evaluated on WNNM KSVD EPLL NCSR BM3D MLP TNRD FoE

RAW RAW 0.971 0.968 0.968 0.853 0.972 0.939 0.963 0.967
RAW sRGB 0.933 0.919 0.931 0.713 0.933 0.886 0.894 0.907
RAW+VST RAW 0.974 0.972 0.973 0.969 0.974 0.963 0.961 0.955
RAW+VST sRGB 0.935 0.931 0.927 0.924 0.932 0.916 0.892 0.914
sRGB sRGB 0.866 0.900 0.829 0.834 0.855 0.838 0.708 0.887

Table 4. Mean SSIM [36] of the denoising methods tested on our benchmark dataset. We apply denoising either on linear raw intensities,
after a variance stabilizing transformation (VST), or after conversion to the sRGB space. Likewise, we evaluate the result either in linear
raw space or in sRGB space. The noisy images have a SSIM of 0.863 (linear raw) and 0.710 (sRGB).

log-likelihood is given by

∂ log Ψ
(
−x̃

σr,n(x̃)

)
∂βr,n1

=
N
(
0 | x̃, σr,n(x̃)

)
Ψ
(
−x̃

σr,n(x̃)

) · ∂
(−x̃)/σr,n(x̃)

∂βr,n1

(33a)

∂ log Ψ
(
−x̃

σr,n(x̃)

)
∂βr,n2

=
N
(
0 | x̃, σr,n(x̃)

)
Ψ
(
−x̃

σr,n(x̃)

) · ∂
(−x̃)/σr,n(x̃)

∂βr,n2

(33b)

∂ log Ψ
(
−x̃

σr,n(x̃)

)
∂α

=
N
(
0 | x̃, σr,n(x̃)

)
Ψ
(
−x̃

σr,n(x̃)

) · ∂
(−x̃)/σr,n(x̃)

∂α
,

(33c)

again employing Eqs. (31a) – (31c). The third case works
analogously. In practice, we optimize for β′ = logβr,n to
ensure that βr,n is positive. Furthermore, we exclude pixels
near image edges [13] from the regression and truncate the
log-likelihood to be robust to outliers, i.e. we set the gradi-
ents to zero for pixels with log T (xin | xir) < −10.

When estimating the α parameter for the image pairs in
our dataset, we use previously recorded noise parameters β.
These were obtained from running our full Tobit regression
on controlled images showing a color checker, see Fig. 6.

B.3. Approximation of Noise Term

Here, we quantify the error that is induced by approxi-
mating the noise term in Eqs. (7a) – (7b) of the main paper.
Specifically, we approximate the variance of the Gaussian
noise by

α2
1 (βr1xr + βr2) ≈ βr1(α1xr + α2) + βr2 . (34)

Obviously, the left-hand side would converge to the right-
hand side as α1 → 1 and α2 → 0, if the ISO value and
exposure time were set with perfect accuracy. In practice,

however, this is not the case. We now evaluate the practi-
cal impact of our approximation. With denoting β(xr) =
β1xr + β2, let

σ(xr) =
√
α2
1β

r(xr) + βn(α(xr)) (35)

be the true noise level function and

σ̂(xr) =
√
βr,n(α(xr)) (36)

be the approximated noise level function. We compute the
normalized root mean squared error Φ [27] between the true
and the approximated noise level function, assuming a uni-
form distribution over pixel intensities

Φ(σ, σ̂) =

∫ 1

0

(σ(xr)− σ̂(xr))
2

σ(xr)
dxr. (37)

The average normalized RMSE on our dataset is 1.4 · 10−4,
meaning that on average approximating the noise standard
deviation introduces a relative error of 0.014%. This is in-
significant compared to the overall estimation accuracy (see
Sec. 5 of the paper).

Figure 6. Test scene used for noise parameter calibration.
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Figure 7. Noise-free intensities (red dashed line) vs. mean of
clipped noisy intensities (blue solid line).

C. Bias from Clipping

Figure 7 plots the noise-free image intensities yn against
the average of clipped noisy observations xn for the noise
level function of the Nexus 6P at ISO 6400. We can see
that the mean of the clipped observations strongly deviates
from the true noise-free intensities near the clipping bound-
aries, also see [11]. Due to this bias introduced by clip-
ping the signal, we can not recover the noise free signal
by simply averaging noisy observations spatially or tempo-
rally. Hence, we perform the smoothing operation of our
low-frequency residual correction in the debiased domain,
c.f . Eqs. (11) and (12).

D. Simulation of Poisson-Gaussian Noise

For our experiments on synthetic data (Sec. 5 of main pa-
per) we apply Poisson-Gaussian noise to the noise-free im-
ages (Eq. 13). To demonstrate that Eq. (13) is sensible let x′n
again be the unclipped noisy signal. According to the het-
eroscedastic Gaussian noise model, c.f . Eqs. (2a) and (2b),
the mean and variance of x′n are given by

E(x′n) = yn, (38)

Var(x′n) = βn1 yn + βn2 . (39)

Let now zn be the unclipped simulated noisy signal of
Eq. (13):

zn ∼ βn1 · P(yn/βn
1 ) +N

(
0,
√
βn2
)

(40)

20 30 40 50 60
0

50

100
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200

250

PSNR   xn

Figure 8. Histogram of PSNR values (in dB) of the crops of the
noisy test images.

According to the properties of the Poisson distribution, the
mean and variance of zn are given by

E(zn) = βn1
yn
βn1

+ 0 = yn, (41)

Var(zn) = (βn1 )2
yn
βn1

+ βn2 = βn1 yn + βn2 . (42)

We can see that the two first moments of x′n and zn match
and hence zn provides a good simulation of the noise as
given by the noise level function βn. The same holds for
the simulation of the reference image.

E. Additional Results
Finally, we give a few more results obtained on our novel

DND benchmark dataset. First, Fig. 8 shows a histogram
of the PSNR values of the crops of the noisy test images
in linear raw space. As we can see, our dataset covers
a wide range of noise levels for the noisy images, hence
allowing to benchmark denoising algorithms across many
different situations. Note that the mean PSNR of the noisy
images (39.38 dB) is significantly below the PSNR of the
reference images (52.76 dB, from the estimated noise level
function). Consequently, the ground truth accuracy of our
benchmark far exceeds the performance of state-of-the-art
denoising techniques (c.f . Table 3), thus providing signif-
icant headroom even for future improvement in denoising
techniques. Figure 9 shows denoising results aggregated for
different noise levels. The top-performing methods over-
all achieve consistent results across almost all noise lev-
els. We can furthermore observe that NCSR has severe
problems in denoising images affected by weak intensity-
dependent noise. When applying the variance stabilizing
transformation, NCSR shows a more competitive perfor-
mance. For MLP we observe that performance on RAW
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(a) Denoising raw pixels, evaluating in RAW space.
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(b) Denoising raw pixels, evaluating in sRGB space.
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(c) Denoising raw pixels after VST, evaluating in RAW space.
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(d) Denoising raw pixels after VST, evaluating in sRGB space.
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(e) Denoising in sRGB space, evaluating in sRGB space.

Figure 9. Denoising performance by noise level σ̄.

denoising peaks for σ̂ close to the noise level used for train-
ing, i.e. σtrain ≈ 10−1.41. For removing noise with a differ-
ent noise level, MLP does not generalize well.

Table 4 provides SSIM [36] results for the tested meth-
ods on our benchmark. Generally, the conclusions made in
Sec. 6 of the paper based on PSNR values generalize to the
SSIM results. As we can see, BM3D and WNNM show the
best performance and their scores differ only marginally.
Overall, we observe that SSIM scores are high across all
methods.

Finally, Figures 10 – 13 show denoising results of the
tested algorithms for one crop of two different images in
our database. The results were obtained from denoising raw

intensities after the variance stabilizing transformation. We
display the denoised images both in linear raw space (red
channel only) and in sRGB space after our camera process-
ing pipeline, c.f . Sec. 6 of the paper. On Figs. 10 and 12
we can see that many methods oversmooth fine structures
(e.g., MLP and FoE), while TNRD undersmoothes and fails
to remove a significant part of the noise. When looking
at the results in sRGB space (Figs. 11 and 13), we can
see that denoising introduces visually apparent color arti-
facts for all methods. Moreover, the noise is clearly spatio-
chromatically correlated in sRGB space.

5



(a) Full-sized reference (b) Reference (c) Noisy (26.59 dB)

(d) WNNM (37.02 dB) (e) KSVD (35.87 dB) (f) EPLL (35.50 dB)

(g) NCSR (37.80 dB) (h) BM3D (36.81 dB) (i) MLP (37.61 dB)

(j) TNRD (32.38 dB) (k) FoE (32.39 dB)

Figure 10. Example denoising result (red channel only) with PSNR values, displayed in linear raw space.
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(a) Full-sized reference (b) Reference (c) Noisy (19.17 dB)

(d) WNNM (30.85 dB) (e) KSVD (29.76 dB) (f) EPLL (30.26 dB)

(g) NCSR (31.90 dB) (h) BM3D (31.36 dB) (i) MLP (31.38 dB)

(j) TNRD (26.51 dB) (k) FoE (27.81 dB)

Figure 11. Example denoising result (red channel only) with PSNR values, displayed in sRGB space.

7



(a) Full-sized reference

(b) Reference (c) Noisy (36.34 dB)

(d) WNNM (45.46 dB) (e) KSVD (45.04 dB) (f) EPLL (45.54 dB)

(g) NCSR (45.51 dB) (h) BM3D (45.78 dB) (i) MLP (44.58 dB)

(j) TNRD (40.44 dB) (k) FoE (42.50 dB)

Figure 12. Example denoising result (red channel only) with PSNR values, displayed in linear raw space. Intensities of crops are uniformly
scaled for better display.
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(a) Full-sized reference

(b) Reference (c) Noisy (23.74 dB)

(d) KSVD (35.21 dB) (e) WNNM (34.66 dB) (f) EPLL (34.83 dB)

(g) NCSR (35.23 dB) (h) BM3D (35.37 dB) (i) MLP (35.43 dB)

(j) TNRD (31.94 dB) (k) FoE (34.00 dB)

Figure 13. Example denoising result with PSNR values, displayed in sRGB space.
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