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A. Overview

This document provides additional quantitative results,
technical details and more qualitative test examples to the
main paper.

In Sec B we extend the robustness test to compare
PointNet with VoxNet on incomplete input. In Sec C
we provide more details on neural network architectures,
training parameters and in Sec D we describe our detection
pipeline in scenes. Then Sec E illustrates more applications
of PointNet, while Sec F shows more analysis experiments.
Sec G provides a proof for our theory on PointNet. At last,
we show more visualization results in Sec H.

B. Comparison between PointNet and VoxNet
(Sec 5.2)

We extend the experiments in Sec 5.2 Robustness Test
to compare PointNet and VoxNet [3] (a representative
architecture for volumetric representation) on robustness to
missing data in the input point cloud. Both networks are
trained on the same train test split with 1024 number of
points as input. For VoxNet we voxelize the point cloud
to 32 × 32 × 32 occupancy grids and augment the training
data by random rotation around up-axis and jittering.

At test time, input points are randomly dropped out
by a certain ratio. As VoxNet is sensitive to rotations,
its prediction uses average scores from 12 viewpoints of
a point cloud. As shown in Fig 1, we see that our
PointNet is much more robust to missing points. VoxNet’s
accuracy dramatically drops when half of the input points
are missing, from 86.3% to 46.0% with a 40.3% difference,
while our PointNet only has a 3.7% performance drop. This
can be explained by the theoretical analysis and explanation
of our PointNet – it is learning to use a collection of critical
points to summarize the shape, thus it is very robust to
missing data.
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Figure 1. PointNet v.s. VoxNet [3] on incomplete input data.
Metric is overall classification accurcacy on ModelNet40 test set.
Note that VoxNet is using 12 viewpoints averaging while PointNet
is using only one view of the point cloud. Evidently PointNet
presents much stronger robustness to missing points.

C. Network Architecture and Training Details
(Sec 5.1)

PointNet Classification Network As the basic archi-
tecture is already illustrated in the main paper, here we
provides more details on the joint alignment/transformation
network and training parameters.

The first transformation network is a mini-PointNet that
takes raw point cloud as input and regresses to a 3 × 3
matrix. It’s composed of a shared MLP (64, 128, 1024)
network (with layer output sizes 64, 128, 1024) on each
point, a max pooling across points and two fully connected
layers with output sizes 512, 256. The output matrix is
initialized as an identity matrix. All layers, except the last
one, include ReLU and batch normalization. The second
transformation network has the same architecture as the first
one except that the output is a 64 × 64 matrix. The matrix
is also initialized as an identity. A regularization loss (with
weight 0.001) is added to the softmax classification loss to
make the matrix close to orthogonal.

We use dropout with keep ratio 0.7 on the last fully
connected layer, whose output dimension 256, before class
score prediction. The decay rate for batch normalization
starts with 0.5 and is gradually increased to 0.99. We use
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Figure 2. Network architecture for part segmentation. T1 and
T2 are alignment/transformation networks for input points and
features. FC is fully connected layer operating on each point. MLP
is multi-layer perceptron on each point. One-hot is a vector of size
16 indicating category of the input shape.

adam optimizer with initial learning rate 0.001, momentum
0.9 and batch size 32. The learning rate is divided by 2
every 20 epochs. Training on ModelNet takes 3-6 hours to
converge with TensorFlow and a GTX1080 GPU.

PointNet Segmentation Network The segmentation net-
work is an extension to the classification PointNet. Local
point features (the output after the second transformation
network) and global feature (output of the max pooling)
are concatenated for each point. No dropout is used for
segmentation network. Training parameters are the same
as the classification network.

As to the task of shape part segmentation, we made
a few modifications to the basic segmentation network
architecture (Fig 2 in main paper) in order to achieve best
performance, as illustrated in Fig 2. We add a one-hot
vector indicating the class of the input and concatenate it
with the max pooling layer’s output. We also increase
neurons in some layers and add skip links to collect local
point features in different layers and concatenate them to
form point feature input to the segmentation network.

While [5] and [7] deal with each object category
independently, due to the lack of training data for some
categories (the total number of shapes for all the categories
in the data set are shown in the first line), we train our
PointNet across categories (but with one-hot vector input to
indicate category). To allow fair comparison, when testing
these two models, we only predict part labels for the given
specific object category.

As to semantic segmentation task, we used the architec-
ture as in Fig 2 in the main paper.

It takes around six to twelve hours to train the model on
ShapeNet part dataset and around half a day to train on the
Stanford semantic parsing dataset.

Baseline 3D CNN Segmentation Network In ShapeNet
part segmentation experiment, we compare our proposed
segmentation version PointNet to two traditional methods
as well as a 3D volumetric CNN network baseline. In Fig 3,
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Figure 3. Baseline 3D CNN segmentation network. The network
is fully convolutional and predicts part scores for each voxel.

we show the baseline 3D volumetric CNN network we use.
We generalize the well-known 3D CNN architectures, such
as VoxNet [3] and 3DShapeNets [6] to a fully convolutional
3D CNN segmentation network.

For a given point cloud, we first convert it to the volu-
metric representation as a occupancy grid with resolution
32 × 32 × 32. Then, five 3D convolution operations each
with 32 output channels and stride of 1 are sequentially
applied to extract features. The receptive field is 19 for each
voxel. Finally, a sequence of 3D convolutional layers with
kernel size 1 × 1 × 1 is appended to the computed feature
map to predict segmentation label for each voxel. ReLU and
batch normalization are used for all layers except the last
one. The network is trained across categories, however, in
order to compare with other baseline methods where object
category is given, we only consider output scores in the
given object category.

D. Details on Detection Pipeline (Sec 5.1)

We build a simple 3D object detection system based on
the semantic segmentation results and our object classifica-
tion PointNet.

We use connected component with segmentation scores
to get object proposals in scenes. Starting from a random
point in the scene, we find its predicted label and use
BFS to search nearby points with the same label, with
a search radius of 0.2 meter. If the resulted cluster has
more than 200 points (assuming a 4096 point sample in
a 1m by 1m area), the cluster’s bounding box is marked
as one object proposal. For each proposed object, it’s
detection score is computed as the average point score for
that category. Before evaluation, proposals with extremely
small areas/volumes are pruned. For tables, chairs and
sofas, the bounding boxes are extended to the floor in case
the legs are separated with the seat/surface.

We observe that in some rooms such as auditoriums
lots of objects (e.g. chairs) are close to each other, where
connected component would fail to correctly segment out



Figure 4. Precision-recall curves for object detection in 3D
point cloud. We evaluated on all six areas for four categories:
table, chair, sofa and board. IoU threshold is 0.5 in volume.

individual ones. Therefore we leverage our classification
network and uses sliding shape method to alleviate the
problem for the chair class. We train a binary classification
network for each category and use the classifier for sliding
window detection. The resulted boxes are pruned by
non-maximum suppression. The proposed boxes from
connected component and sliding shapes are combined for
final evaluation.

In Fig 4, we show the precision-recall curves for object
detection. We trained six models, where each one of them
is trained on five areas and tested on the left area. At test
phase, each model is tested on the area it has never seen.
The test results for all six areas are aggregated for the PR
curve generation.

E. More Applications (Sec 5.1)

Model Retrieval from Point Cloud Our PointNet learns
a global shape signature for every given input point cloud.
We expect geometrically similar shapes have similar global
signature. In this section, we test our conjecture on the
shape retrieval application. To be more specific, for every
given query shape from ModelNet test split, we compute
its global signature (output of the layer before the score
prediction layer) given by our classification PointNet and
retrieve similar shapes in the train split by nearest neighbor
search. Results are shown in Fig 5.

Shape Correspondence In this section, we show that
point features learnt by PointNet can be potentially used
to compute shape correspondences. Given two shapes, we
compute the correspondence between their critical point
sets CS’s by matching the pairs of points that activate
the same dimensions in the global features. Fig 6 and
Fig 7 show the detected shape correspondence between two
similar chairs and tables.

Query
Point Cloud

Top-5 Retrieval CAD Models

Figure 5. Model retrieval from point cloud. For every given
point cloud, we retrieve the top-5 similar shapes from the
ModelNet test split. From top to bottom rows, we show examples
of chair, plant, nightstand and bathtub queries. Retrieved results
that are in wrong category are marked by red boxes.

Figure 6. Shape correspondence between two chairs. For the
clarity of the visualization, we only show 20 randomly picked
correspondence pairs.

Figure 7. Shape correspondence between two tables. For the
clarity of the visualization, we only show 20 randomly picked
correspondence pairs.

F. More Architecture Analysis (Sec 5.2)
Effects of Bottleneck Dimension and Number of Input
Points Here we show our model’s performance change
with regard to the size of the first max layer output as
well as the number of input points. In Fig 8 we see that
performance grows as we increase the number of points



however it saturates at around 1K points. The max layer
size plays an important role, increasing the layer size from
64 to 1024 results in a 2−4% performance gain. It indicates
that we need enough point feature functions to cover the 3D
space in order to discriminate different shapes.

It’s worth notice that even with 64 points as input
(obtained from furthest point sampling on meshes), our
network can achieve decent performance.
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Figure 8. Effects of bottleneck size and number of input points.
The metric is overall classification accuracy on ModelNet40 test
set.

MNIST Digit Classification While we focus on 3D point
cloud learning, a sanity check experiment is to apply our
network on a 2D point clouds - pixel sets.

To convert an MNIST image into a 2D point set we
threshold pixel values and add the pixel (represented as a
point with (x, y) coordinate in the image) with values larger
than 128 to the set. We use a set size of 256. If there are
more than 256 pixels int he set, we randomly sub-sample it;
if there are less, we pad the set with the one of the pixels in
the set (due to our max operation, which point to use for the
padding will not affect outcome).

As seen in Table 1, we compare with a few baselines
including multi-layer perceptron that considers input image
as an ordered vector, a RNN that consider input as sequence
from pixel (0,0) to pixel (27,27), and a vanilla version CNN.
While the best performing model on MNIST is still well
engineered CNNs (achieving less than 0.3% error rate),
it’s interesting to see that our PointNet model can achieve
reasonable performance by considering image as a 2D point
set.

input error (%)
Multi-layer perceptron [4] vector 1.60
LeNet5 [1] image 0.80
Ours PointNet point set 0.78

Table 1. MNIST classification results. We compare with vanilla
versions of other deep architectures to show that our network based
on point sets input is achieving reasonable performance on this
traditional task.

Ground-truthPrediction
Figure 9. PointNet normal reconstrution results. In this figure,
we show the reconstructed normals for all the points in some
sample point clouds and the ground-truth normals computed on
the mesh.

Normal Estimation In segmentation version of PointNet,
local point features and global feature are concatenated
in order to provide context to local points. However,
it’s unclear whether the context is learnt through this
concatenation. In this experiment, we validate our design
by showing that our segmentation network can be trained
to predict point normals, a local geometric property that is
determined by a point’s neighborhood.

We train a modified version of our segmentation Point-
Net in a supervised manner to regress to the ground-
truth point normals. We just change the last layer of our
segmentation PointNet to predict normal vector for each
point. We use absolute value of cosine distance as loss.

Fig. 9 compares our PointNet normal prediction results
(the left columns) to the ground-truth normals computed
from the mesh (the right columns). We observe a
reasonable normal reconstruction. Our predictions are
more smooth and continuous than the ground-truth which
includes flipped normal directions in some region.

Segmentation Robustness As discussed in Sec 5.2 and
Sec B, our PointNet is less sensitive to data corruption and
missing points for classification tasks since the global shape



Input Point Cloud Critical Point Sets Upper-bound Shapes

Figure 10. The consistency of segmentation results. We
illustrate the segmentation results for some sample given point
clouds S, their critical point sets CS and upper-bound shapes NS .
We observe that the shape family between the CS and NS share a
consistent segmentation results.

feature is extracted from a collection of critical points from
the given input point cloud. In this section, we show that the
robustness holds for segmentation tasks too. The per-point
part labels are predicted based on the combination of per-
point features and the learnt global shape feature. In Fig 10,
we illustrate the segmentation results for the given input
point clouds S (the left-most column), the critical point sets
CS (the middle column) and the upper-bound shapes NS .

Network Generalizability to Unseen Shape Categories
In Fig 11, we visualize the critical point sets and the upper-
bound shapes for new shapes from unseen categories (face,
house, rabbit, teapot) that are not present in ModelNet or
ShapeNet. It shows that the learnt per-point functions are
generalizable. However, since we train mostly on man-
made objects with lots of planar structures, the recon-
structed upper-bound shape in novel categories also contain
more planar surfaces.

G. Proof of Theorem (Sec 4.3)
Let X = {S : S ⊆ [0, 1] and |S| = n}.
f : X → R is a continuous function on X w.r.t to

Hausdorff distance dH(·, ·) if the following condition is
satisfied:
∀ε > 0,∃δ > 0, for any S, S′ ∈ X , if dH(S, S′) < δ,

then |f(S)− f(S′)| < ε.
We show that f can be approximated arbitrarily by

composing a symmetric function and a continuous function.

Theorem 1 Suppose f : X → R is a continuous
set function w.r.t Hausdorff distance dH(·, ·). ∀ε >
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Figure 11. The critical point sets and the upper-bound shapes
for unseen objects. We visualize the critical point sets and the
upper-bound shapes for teapot, bunny, hand and human body,
which are not in the ModelNet or ShapeNet shape repository to
test the generalizability of the learnt per-point functions of our
PointNet on other unseen objects. The images are color-coded
to reflect the depth information.

0, ∃ a continuous function h and a symmetric function
g(x1, . . . , xn) = γ◦MAX, where γ is a continuous function,
MAX is a vector max operator that takes n vectors as input
and returns a new vector of the element-wise maximum,
such that for any S ∈ X ,

|f(S)− γ(MAX(h(x1), . . . , h(xn)))| < ε

where x1, . . . , xn are the elements of S extracted in certain
order,

By the continuity of f , we take δε so that |f(S) −
f(S′)| < ε for any S, S′ ∈ X if dH(S, S′) < δε.

Define K = d1/δεe, which split [0, 1] into K intervals
evenly and define an auxiliary function that maps a point to
the left end of the interval it lies in:

σ(x) =
bKxc
K

Let S̃ = {σ(x) : x ∈ S}, then

|f(S)− f(S̃)| < ε

because dH(S, S̃) < 1/K ≤ δε.
Let hk(x) = e−d(x,[

k−1
K , k

K ]) be a soft indicator function
where d(x, I) is the point to set (interval) distance. Let
h(x) = [h1(x); . . . ;hK(x)], then h : R→ RK .

Let vj(x1, . . . , xn) = max{h̃j(x1), . . . , h̃j(xn)}, indi-
cating the occupancy of the j-th interval by points in S.
Let v = [v1; . . . ; vK ], then v : R× . . .× R︸ ︷︷ ︸

n

→ {0, 1}K

is a symmetric function, indicating the occupancy of each
interval by points in S.



Define τ : {0, 1}K → X as τ(v) = {k−1K : vk ≥ 1},
which maps the occupancy vector to a set which contains
the left end of each occupied interval. It is easy to show:

τ(v(x1, . . . , xn)) ≡ S̃

where x1, . . . , xn are the elements of S extracted in certain
order.

Let γ : RK → R be a continuous function such that
γ(v) = f(τ(v)) for v ∈ {0, 1}K . Then,

|γ(v(x1, . . . , xn))− f(S)|
=|f(τ(v(x1, . . . , xn)))− f(S)| < ε

Note that γ(v(x1, . . . , xn)) can be rewritten as follows:

γ(v(x1, . . . , xn)) =γ(MAX(h(x1), . . . ,h(xn)))

=(γ ◦MAX)(h(x1), . . . ,h(xn))

Obviously γ ◦MAX is a symmetric function.
Next we give the proof of Theorem 2. We define

u = MAX
xi∈S

{h(xi)} to be the sub-network of f which

maps a point set in [0, 1]m to a K-dimensional vector. The
following theorem tells us that small corruptions or extra
noise points in the input set is not likely to change the output
of our network:

Theorem 2 Suppose u : X → RK such that u =
MAX
xi∈S
{h(xi)} and f = γ ◦ u. Then,

(a) ∀S, ∃ CS ,NS ⊆ X , f(T ) = f(S) if CS ⊆ T ⊆ NS;

(b) |CS | ≤ K

Obviously, ∀S ∈ X , f(S) is determined by u(S). So
we only need to prove that ∀S, ∃ CS ,NS ⊆ X , f(T ) =
f(S) if CS ⊆ T ⊆ NS .

For the jth dimension as the output of u, there exists at
least one xj ∈ X such that hj(xj) = uj , where hj is the
jth dimension of the output vector from h. Take CS as the
union of all xj for j = 1, . . . ,K. Then, CS satisfies the
above condition.

Adding any additional points x such that h(x) ≤ u(S) at
all dimensions to CS does not change u, hence f . Therefore,
TS can be obtained adding the union of all such points to
NS .

H. More Visualizations
Classification Visualization We use t-SNE[2] to embed
point cloud global signature (1024-dim) from our classifica-
tion PointNet into a 2D space. Fig 13 shows the embedding
space of ModelNet 40 test split shapes. Similar shapes are
clustered together according to their semantic categories.

Figure 12. Point function visualization. For each per-point
function h, we calculate the values h(p) for all the points p in a
cube of diameter two located at the origin, which spatially covers
the unit sphere to which our input shapes are normalized when
training our PointNet. In this figure, we visualize all the points
p that give h(p) > 0.5 with function values color-coded by the
brightness of the voxel. We randomly pick 15 point functions and
visualize the activation regions for them.

Segmentation Visualization We present more segmenta-
tion results on both complete CAD models and simulated
Kinect partial scans. We also visualize failure cases with
error analysis. Fig 14 and Fig 15 show more segmentation
results generated on complete CAD models and their
simulated Kinect scans. Fig 16 illustrates some failure
cases. Please read the caption for the error analysis.

Scene Semantic Parsing Visualization We give a visual-
ization of semantic parsing in Fig 17 where we show input
point cloud, prediction and ground truth for both semantic
segmentation and object detection for two office rooms and
one conference room. The area and the rooms are unseen in
the training set.

Point Function Visualization Our classification Point-
Net computes K (we take K = 1024 in this visualization)
dimension point features for each point and aggregates
all the per-point local features via a max pooling layer
into a single K-dim vector, which forms the global shape
descriptor.

To gain more insights on what the learnt per-point
functions h’s detect, we visualize the points pi’s that
give high per-point function value f(pi) in Fig 12. This
visualization clearly shows that different point functions
learn to detect for points in different regions with various
shapes scattered in the whole space.
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Figure 14. PointNet segmentation results on complete CAD models.
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Figure 15. PointNet segmentation results on simulated Kinect scans.
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Figure 16. PointNet segmentation failure cases. In this figure, we summarize six types of common errors in our segmentation application.
The prediction and the ground-truth segmentations are given in the first and second columns, while the difference maps are computed and
shown in the third columns. The red dots correspond to the wrongly labeled points in the given point clouds. (a) illustrates the most common
failure cases: the points on the boundary are wrongly labeled. In the examples, the label predictions for the points near the intersections
between the table/chair legs and the tops are not accurate. However, most segmentation algorithms suffer from this error. (b) shows the
errors on exotic shapes. For examples, the chandelier and the airplane shown in the figure are very rare in the data set. (c) shows that small
parts can be overwritten by nearby large parts. For example, the jet engines for airplanes (yellow in the figure) are mistakenly classified
as body (green) or the plane wing (purple). (d) shows the error caused by the inherent ambiguity of shape parts. For example, the two
bottoms of the two tables in the figure are classified as table legs and table bases (category other in [7]), while ground-truth segmentation
is the opposite. (e) illustrates the error introduced by the incompleteness of the partial scans. For the two caps in the figure, almost half of
the point clouds are missing. (f) shows the failure cases when some object categories have too less training data to cover enough variety.
There are only 54 bags and 39 caps in the whole dataset for the two categories shown here.
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Figure 17. Examples of semantic segmentation and object detection. First row is input point cloud, where walls and ceiling are hided
for clarity. Second and third rows are prediction and ground-truth of semantic segmentation on points, where points belonging to different
semantic regions are colored differently (chairs in red, tables in purple, sofa in orange, board in gray, bookcase in green, floors in blue,
windows in violet, beam in yellow, column in magenta, doors in khaki and clutters in black). The last two rows are object detection with
bounding boxes, where predicted boxes are from connected components based on semantic segmentation prediction.


