Supplementary Material for Learning Detailed Face Reconstruction from a
Single Image

1. Supplementary Qualitative Results

In Figure | we present additional qualitative comparisons. First, note how our network correctly infers the face alignment
without any external information, producing similar alignment to the state-of-the-art alignment from [3]. The proposed
method is able to produce fine facial details, as opposed to [6, 8], while being more robust to different expressions compared
to the template-based method of [4]. Figure 2 shows additional reconstructions.
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Figure 1: Additional qualitative results.



Figure 2: Additional qualitative results



2. Synthetic Data

In Figure 3 sampled synthetic examples are visualized, where random backgrounds are used. The rendered faces differ
extensively in their geometry, texture, illumination, and reflectance properties.

Figure 3: Synthetic data samples.

2.1. Generalizing from Synthetic Data

The usage of synthetic data is becoming a prominent approach for learning problems on 3D data [7, 2, 1]. While data
generation grants us flexibility and allows generation of large-scale datasets, there are still some limitations for synthetic
data. As noted in [0], while training on synthetic faces generally produces plausible results on in-the-wild images, the
network might fail when the input contains details that are not seen in the synthetic dataset, such as glasses or facial hair. In
Figure 4 we show how our method handles such examples compared to [6]. From the results we can see that both methods
show some robustness to eyeglasses, even when the eyes themselves are occluded. Regarding facial hair, one can see that
a dominant beard might confuse both methods and make them misalign the chin or the mouth. Still, our method is able to
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Figure 4: Generalization from synthetic data



3. Further Analysis
Next, we present a few additional experiments conducted on the different elements of the proposed network.
3.1. CoarseNet

A key property of iterative networks is convergence. To validate that CoarseNet meets this requirement, we calculated
the average change in the output of CoarseNet between different iterations. As can be seen in Figure 5, the network indeed
converges after a few iterations.
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Figure 5: Convergence graph. The average MSE as a function of the iteration number.

3.2. FineNet

As detailed in the paper, FineNet starts with a set of convolutional blocks from the VGG Face Net [5], each followed by a
pooling layer. The output of these blocks is then connected together to form a set of dense feature maps. While using more
VGG blocks could possibly provide more data for the final prediction, it would also result in a larger network, increasing the
overall training and runtime complexity. As Shape-from-Shading mainly relies on local features we choose to truncate the
network after the third pooling operation. As shown in Figure 6, while using only a single block results in discontinuances
and artifacts, using two or more blocks produces reasonable results.

Another interesting property of FineNet presented in the paper is its robustness to different input sizes, allowing it to
extract more details when a high-resolution input is given. Note that the same does not hold for CoarseNet which uses a fixed
averaging operator. However, as CoarseNet recovers only the coarse geometry it does not require a high-resolution input and
would not benefit from it. In practice, we always scale the input given to CoarseNet to 200 x 200, while feeding FineNet

with inputs in the desired scale.

Figure 6: Network depth. From left to right, the input image, and FineNet results using 1 to 4 blocks from VGG Face Net.




4. Supplementary Quantitative Analysis

Here, we demonstrate a quantitative analysis of the performance of the proposed method. The absolute error heat maps in
Figure 7 present the typical error distribution of the proposed method versus those of other techniques [4, 6, 8].
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Figure 7: Absolute depth error heat maps of different methods.
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