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Figure 1. The x, y, z surface coordinates on the teddy model (left)
are represented using 3 feature channels of a geometry image (cen-
ter) and the surface reconstructed from the geometry image is
shown to the right [3].

1. Geometry Images
As mentioned in the main manuscript, geometry images

are a specific kind of surface parametrization wherein the
geometry is resampled into a regular 2D grid akin to an im-
age. As discussed in [3], geometry images reduce mem-
ory and complexity for learning shapes using CNNs over
free boundary or disc parameterizations as every pixel en-
codes desired shape information. This is shown in figure 1
wherein the x, y, z coordinates of the teddy mesh model are
encoded in a separate geometry image. The 3D surface re-
constructed from this representation closely resembles the
original mesh and preserves its prominent features. We fol-
low the approach of [3] to create a geometry image which
consists of authalically parameterizing a surface mesh on a
spherical domain, then projecting it onto an octahedron and
cutting to convert the original 3D shape into a flat and reg-
ular geometry image (see 2 and [2]). The geometry image
representation possess symmetry beneficial during learning.

2. Non-rigid shapes
We first discuss the reconstruction error of our deep

residual networks, and then provide additional qualitative
results to validate our approach. Figure 3 shows the Eu-

Figure 2. Creation of geometry image: (A) The mesh is first au-
thalically parameterized on a sphere, then (B) projected onto an
octahedron using area sampling to preserve the spherical triangu-
lar areas on the sphere, and finally (C) cut and unfolded along 4
edges as shown in the line plots below to create a flat and regular
geometry image.

Figure 3. Error of x, y, z geometry image created by the deep
residual network from a single depth image over training and test
datasets for hands.

clidean distance error between the ground truth geometry
image and the geometry image created by the deep neural
network over epochs when shown a depth image. We do
this for each of the three feature channels of the geometry
image, i.e. the x, y, z coordinates and for both the training
and test datasets. The hand is enclosed in approximately a
20× 20× 20 bounding box centered at the origin. The ver-

1



Figure 4. Results on test dataset for reconstructing the 3D shape surface of the hand from a single depth image. The first row is the depth
image, the second row is the ground truth and the third row is our reconstruction.

Figure 5. Each row shows the 3D surface plots of geometry images created by our neural network by inputting uniformly spaced parametric
joint angle vectors. The highlighted shapes are in the training dataset.

tical axis shows the total sum of reconstruction error over
all 4096 pixels in the 64× 64 geometry image. We see that
the errors decrease over epochs and the training set error is
lower than the test set error, as is natural. The reconstruc-
tion errors for the x, y, z geometry image are approximately
equal because the hand undergoes full articulation. We can
evaluate the per pixel reconstruction error for a geometry
image to be approximately 0.2 units, i.e. approximately 1%
of the length of the bounding box. This suggest that our
reconstruction from a depth image is very accurate.

Figure 4 shows additional 3D surface plots of the gen-
erated geometry image by our neural networks on the test
depth images. We see that it is able to recover the full artic-
ulation of the hand very close to the ground truth even in the
presence of occlusion. Next, we perform additional exper-
iments on generative modeling of non-rigid shape surfaces
from a parametric representation. We also create two ran-
dom 18 dimensional vectors, and uniformly sampled from
the linearly interpolated joint-angle values from the first to
the second vector. The rows of figure 5 shows the output 3D
surface plots reconstructed from the x, y, z geometry image
feature channels. We see natural transition from the first to
the second pose.

3. Rigid shapes

We now discuss the reconstruction error of the deep con-
volutional neural networks for rigid shape surface creation.
Figures 6 and 7 show the Euclidean distance error between
the ground truth geometry image and the geometry im-
age created by the deep neural network over epochs when
shown a single RGB image for the dataset of cars and air-
planes respectively. We do this for each of the three feature
channels of the geometry image, i.e. the x, y, z coordinates
and for both the training and test datasets. The rigid models
are enclosed in a 128 × 128 × 128 bounding box centered
at the origin. The vertical axis shows the total sum of re-
construction error over all 4096 pixels in the 64 × 64 ge-
ometry image. We see that the errors decrease over epochs
and the training set errors are generally lower than the test
set errors. Furthermore, we see that the error along the z
dimension is lower than the other two dimensions. This
is because we consider a limited range of elevation angle
between 0 and 45 degrees. A Euclidean distance error of
10000 over 4096 pixels indicates that the per-pixel recon-
struction error is about 2.5 units, i.e. about 2% of the length
of the bounding box. This is a reasonable accuracy consid-



Figure 6. Error of x, y, z geometry image created by the deep
residual network from a single depth image over training and test
datasets for cars.

Figure 7. Error of x, y, z geometry image created by the deep
residual network from a single depth image over training and test
datasets for airplanes

ering both these categories of shapes have high intra-class
variation. Our experiments indicate that a few samples for
which the reconstruction fail dominate the contribution to
this error. The failure cases are discussed later.

Figure 8 shows the total reconstruction error due to a
one-hot encoded and view parameters fed into a deep neu-
ral network for two cases (1) A deep residual network that
learns the geometry image feature channels directly in blue,
and (2) A deep residual network that learns the residual of
the the geometry image and the shape surface is constructed
by adding the base geometry image to the residual geome-
try image in red. We see that the total reconstruction error,
i.e., the total sum over 4096 pixels each encoding the x, y, z
coordinate of the surface model, is a lot lower over epochs
for the neural network learning the residual geometry im-
age compared to the neural network learning the geometry
image directly. This highlights the benefit of learning the
residual geometry image whenever possible in the spirit of
deep residual networks [1]. Figure 9 shows the total re-
construction error over epochs for all models in the dataset
when trained with different number of azimuth angles. The

Figure 8. Error of 3D surface generation over epochs for residual
geometry images and normal geometry images.

Figure 9. Error of viewpoint interpolation for different sizes of
training set as determined by the interval between azimuth angles.
The elevation angles are fixed at 4 values of [0, 15, 30, 45].

models in the dataset are in intervals of 15 degrees for the
azimuth angle and this consists the base case shown in blue
with naturally the lowest reconstruction error. The red line
shows the total reconstruction error over epochs for all mod-
els in the dataset when trained with models at intervals of
30 degrees for the azimuth angle. In a similar manner, the
green and the magenta plots show the total reconstruction
error over epochs for all models in the dataset when trained
with models at intervals of 45 degrees and 60 degrees re-
spectively. We see that the error increases as we train the
neural network with models at larger intervals of the az-
imuth angle.

Finally in figure 10 we qualitatively show the quality of
our reconstructions for a single RGB image on the test car
and airplane datasets. We see that the reconstruction is sen-
sitive to the features on the airplane and the car, and often
times our approach provides better reconstruction that even
the ground truth model. See for example the seventh and
eight examples for the airplane models. The ground truths
are noisy because of poor correspondence identification by
blended intrinsic maps. However, as our method learns a
internal representation of a category of shapes, we are able
to reconstruct the 3D shape surface with high fidelity.



Figure 10. Qualitative evaluation of 3D surface reconstruction from a single image on car (top) and airplane (bottom) dataset.

Figure 11. Failure cases for 3D surface reconstruction from a single image.

Figure 12. Top row shows shapes created for different K’s for K-
hot encodings.

Figure 11 shows some failure cases of our method. The
surface reconstruction fails when the image is of low con-
trast with a lot of black pixels blending it with the back-
ground or insufficient training examples in the dataset for
a particular subclass of shapes such as buses. Also, some-
times the poses are identified incorrectly, albeit rarely. The
thin and elongated structure of the airplanes also results in
some outlier points among some feature channels in a ge-
ometry image.

We can create more diverse content by inputting ran-
dom values in K-hot encodings with sum of vector equal

to 1. Figure 12 shows the cars created for values of
K = 3, 5, 10, 485 respectively. We see the variability of
new shape surfaces created by the network increases with
K. As a final note, the total mean reconstruction error
per shape at elevation 45◦ for a car network trained only
on [0,15,30]◦ is 8143 compared to 6876 for a network
trained on [0,15,30,45]◦ showing that our network can rea-
sonably extrapolate. Also, the total reconstruction errors
for cars with and without curvature weighted loss function
are 1.76e4 and 2.77e4, respectively, indicating that high fre-
quency features are better preserved. This relative improve-
ment is more meaningful, as the absolute values are hard to
gauge.
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