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1. Rotational Alignment Details
1.1. The matrix Ξkk′

In the main text, we are given two unit vectors µ1k and µ2k′ in R3. We define Ξkk′ = Ξ(µ1k, µ2k′), where Ξ(u, v) ∈ R4×4

is defined by uT (q ◦ v) = qTΞ(u, v)q, where u = (ui, uj , uk), v = (vi, vj , vk), and q = (qi, qj , qk, qr). By standard
quaternion rotation formula, we have

uT (q ◦ v) =

uiuj
uk

T 1− 2q2j − 2q2k 2(qiqj − qkqr) 2(qiqk + qjqr)
2(qiqj + qkqr) 1− 2q2i − 2q2k 2(qjqk − qiqr)
2(qiqk − qjqr) 2(qjqk + qiqr) 1− 2q2i − 2q2j

vivj
vk


= q2i (−2ujvj − 2ukvk) + q2j (−2uivi − 2ukvk) + q2k(−2uivi − 2ujvj)

+ qiqj(2ujvi + 2uivj) + qjqk(2ukvj + 2ujvk) + qiqk(2uivk + 2ukvi)

+ qiqr(2ukvj − 2ujvk) + qjqr(2uivk − 2ukvi) + qkqr(2ujvi − 2uivj) + uT v

Rearranging the quadratic expression in q into the form qTMq, we find the formula for Ξ(u, v):

Ξ(u, v) =


uivi − ujvj − ukvk ujvi + uivj uivk + ukvi ukvj − ujvk

ujvi + uivj ujvj − uivi − ukvk ujvk + ukvj uivk − ukvi
uivk + ukvi ujvk + ukvj ukvk − uivi − ujvj ujvi − uivj
ukvj − ujvk uivk − ukvi ujvi − uivj uT v


1.2. Quadratic upper bound on f

First, for any z ∈ [a, b] where 0 ≤ a ≤ b, we can express z2 as a convex combination of a2 and b2, i.e.

z2 = λa2 + (1− λ)b2 =⇒ λ =
z2 − a2

b2 − a2
(1)

Since f(
√
z) = e

√
z−e−

√
z

√
z

for z ≥ 0 is convex (this can be shown by taking the second derivative and showing it is
nonnegative), we have

f(z) = f
(√

z2
)

= f
(√

λa2 + (1− λ)b2
)

(2)

≤ λf (a) + (1− λ)f (b) (3)

= z2
(
f(b)− f(a)

b2 − a2

)
+

(
b2f(a)− a2f(b)

b2 − a2

)
. (4)

In the main text, since we know `kk′ ≤ zkk′(q) ≤ ukk′ for any q ∈ Q, we can use the above upper bound formula with
a = `kk′ and b = ukk′ .
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Figure 1: The three subdivision patterns—due to the choice of the green edge—of a tetrahedron displayed in 3D. Colors
designate different edge types: corner edges (blue) from an edge midpoint to a vertex; tie edges (orange) between two edge
midpoints, running along a tetrahedron face; and skew edges (green) between two edge midpoints, running through the inside
of the tetrahedron.

1.3. Derivation of the γN bound

Lemma 1. Let γN be the minimum dot product between any two tetrahedral vertices at refinement level N . Then

2γN−1
1 + γN−1

≤ γN . (5)

Proof. Let the vertices of the projected tetrahedron be qi, i ∈ {1, 2, 3, 4}. Let γ = minj 6=k q
T
j qk, Γ = maxj 6=k q

T
j qk and

define the vertex between qi and qj as qij =
qi+qj
‖qi+qj‖ . Upon subdividing the tetrahedron, there are three different types of

edge in the new smaller tetrahedra. Refer to Fig. 1 for a depiction of these three types.
The first type of edge (blue in Fig. 1) is a corner edge from a vertex to an edge midpoint. The cosine angle between the

vertices created by a corner edge is

qTi qij =

√
1 + qTi qj

2
≥
√

1 + γ

2
. (6)

The second type of edge (orange in Fig. 1) is a tie edge from an edge midpoint to an edge midpoint along a face. The
cosine angle between the vertices created by a tie edge is

qTijqik =
1 + qTi qk + qTi qj + qTj qk

2
√

1 + qTi qj
√

1 + qTi qk
≥ 1 + qTi qk + qTi qj + γ

2
√

1 + qTi qj
√

1 + qTi qk
>

1 + 3γ

2(1 + γ)
. (7)

To see the rightmost inequality, consider the minimization

min
x,y

1 + γ + x+ y

2
√

1 + x
√

1 + y
s.t. γ ≤ x, y ≤ Γ . (8)

The optimum solution is at x = y = γ, since the function is symmetric and monotonic in x, y:

d

dx

(
1 + γ + x+ y

2
√

1 + x
√

1 + y

)
=

1

4
√

1 + x
√

1 + y

(
1− γ + y

(1 + x)

)
>

1

4
√

1 + x
√

1 + y

(
1− γ + Γ

1 + γ

)
> 0.

(9)

The final type of edge (green in Fig. 1) is a skew edge from an edge midpoint to an edge midpoint through the interior of the
tetrahedron. The cosine angle between vertices created by a skew edge is

qTijqkl =
qTi qk + qTi ql + qTj qk + qTj ql

2
√

1 + qTi qj

√
1 + qTk ql

. (10)

Note that we can choose any of three skew edges in our refinement. Therefore, we can formulate bounding the skew edge
dot product as a process where “nature” creates three skew edges, and we select the best one (i.e. the one of maximum dot



product). Thus, in the worst case, nature solves the following problem: given a selection of a skew edge, minimize its dot
product such that the other two dot products are lower (and thus nature forces us to pick that edge). Let

s1 = qT1 q3 + qT2 q4 p1 = (qT1 q3)(qT2 q4)

s2 = qT1 q4 + qT2 q3 p2 = (qT1 q4)(qT2 q3)

s3 = qT1 q2 + qT3 q4 p3 = (qT1 q2)(qT3 q4) .

(11)

Then without loss of generality, we assume the ordering

s1 + s2
2
√

1 + s3 + p3
≥ s1 + s3

2
√

1 + s2 + p2
≥ s2 + s3

2
√

1 + s1 + p1
. (12)

Now since the function f(x, y) = (1 + x)(1 + y) constrained by x + y = c, x, y ≥ 0, reaches its maximum at x = y = c
2 ,

we can reduce all of the fractions above until 1 + si + pi = (1 + si/2)2, and therefore redefining xi = si/2, this problem is
reduced to minimizing the maximum fraction of

x1 + x2
1 + x3

≥ x1 + x3
1 + x2

≥ x2 + x3
1 + x1

. (13)

Note that while the ordering of the inequalities may switch, we can assume without loss of generality that the above holds
(since we can simply redefine labels 1, 2, and 3 accordingly). Next, note that the first inequality above implies that x2 ≥ x3,
and the second inequality likewise implies that x1 ≥ x2. Therefore, minimizing over x1 and x2 while keeping x3 fixed yields

2x3
1 + x3

. (14)

And finally, minimizing over x3 ∈ [γ,Γ] yields

max
skew edges

qTijqkl ≥
2γ

1 + γ
. (15)

For the final result of the proof, note that√
1 + γ

2
≥ 1 + 3γ

2(1 + γ)
≥ 2γ

1 + γ
∀γ ∈ [0, 1] . (16)

1.4. Proof of Theorem 1 (rotational convergence)

Theorem 1. Suppose γ0 = 36◦ is the initial maximum angle between vertices in the tetrahedra tessellation of S3, and let

N , max

{
0,
⌈
log2

γ−10 − 1

cos (ε/2)
−1 − 1

⌉}
. (17)

Then at most N refinements are required to achieve a rotational tolerance of ε degrees, and BB has complexity O(ε−6).

Proof. Using Lemma 1, we know that the minimum dot product between any two vertices in a single cover element Q at
refinement level N satisfies

γN ≥
2γN−1

1 + γN−1
. (18)

This function is monotonically increasing (by taking the derivative and showing it is positive). So we recursively apply the
bound:

γN ≥
2 2γN−2

1+γN−2

1 + 2γN−2

1+γN−2

=
4γN−2

1 + 3γN−2
≥ · · · ≥ 2Nγ0

1 + (2N − 1) γ0
. (19)



If we require a rotational tolerance of ε degrees, we need that 2 cos−1 γN ≤ ε (noting that the rotation angle between two
quaternions is 2 times the angle between their vectors in S3). Therefore, we need

γN ≥ cos (ε/2) . (20)

Using our lower bound, this is satisfied if

2Nγ0
1 + (2N − 1) γ0

≥ cos (ε/2) =⇒ N ≥ log2

γ−10 − 1

cos (ε/2)
−1 − 1

. (21)

Since N must be a nonnegative integer, the formula in Eq. (17) follows. At search depth M , the BB algorithm will have
examined at most M tetrahedra, where

M = 600(1 + 8 + 82 + · · ·+ 8N ) = 600
8N+1 − 1

7
(22)

Using the formula for N in Eq. (17) (and noting 8 = 23), we have

M = O

((
γ−10 − 1

cos(ε/2)−1 − 1

)3
)

= O

((
cos (ε/2)

1− cos (ε/2)

)3
)
. (23)

Finally, using the Taylor expansion of cosine,

M = O

((
1− ε2

ε2

)3
)

= O
(
ε−6
)
. (24)

1.5. Derivation for the `kk′ and ukk′ optimization

We need to show that maximizing µT (q ◦ ν) for q ∈ Q is equivalent to maximizing µT v for v = Mα, α ≥ 0, α ∈ R4, for
some M ∈ R3×4. The following lemma establishes this fact.

Lemma 2. Let Q be a projected tetrahedron cover element on S3 with vertices qi, i = 1, . . . , 4, define m ∈ R3 satisfying
‖m‖ = 1 (i.e. m ∈ S2), and letM be the set of vectors reached by rotating m by q ∈ Q,

M ,
{
x ∈ R3 : x = q ◦m, q ∈ Q

}
. (25)

ThenM can be described as a combination of vectors in R3 via

M =
{
x ∈ R3 : ‖x‖ = 1, x = Mα, α ∈ R4

+

}
. (26)

where mi , qi ◦m ∈ R3, and M , [m1 · · ·m4] ∈ R3×4.

Proof. In this proof, we make use of quaternion notation. If q = xi+ yj + zk + w is a quaternion, then its pure component
is −→q = xi+ yj + zk, its scalar component is q̃ = w, and conjugation is denoted q∗.

To begin the proof, note that q ∈ Q implies that q = Qα for some α ∈ R4
+, by definition. Since q ◦m is a rotation of a

vector, it returns a pure quaternion; thus,

q ◦m = −−−→q ◦m =
−−−−−−−−−−→∑
i,j

αiαjqimq
∗
j =

∑
i,j

αiαj
−−−→
qimq

∗
j

=
∑
i,j

αiαj
−−−−−−→
qimq

∗
i qiq

∗
j =

∑
i,j

αiαj
−−−−→
miqiq

∗
j

(27)

where αi is the ith component of α. Now note that qiq∗j is the quaternion that rotates mj to mi:

(qiq
∗
j ) ◦mj = (qiq

∗
j )mj(qiq

∗
j )∗ = qiq

∗
j qjmq

∗
j qjq

∗
i = qimq

∗
i = mi. (28)



Therefore, the axis of rotation of qiq∗j is the unit vector directed along mj × mi, and the angle is θij . Since mj × mi =

sin (θij) m̂j ×mi, we have that

qiq
∗
j =

(
mj ×mi

sin (θij/2)

sin θij

)T  ij
k

+ cos
θij
2
w . (29)

Using this expansion along with the identity −→rs = r̃−→s + s̃−→r +−→r ×−→s , we have that

q ◦m =
∑
i,j

αiαj
−−−−→
miqiq

∗
j

=
∑
i,j

αiαj

(
miq̃iq∗j +mi ×

−−→
qiq
∗
j

)
=
∑
i

α2
imi +

∑
i 6=j

αiαj

(
miq̃iq∗j +mi ×

−−→
qiq
∗
j

)
=
∑
i α

2
imi +

∑
i<j αiαj

(
(mi +mj) cos

(
θij
2

)
+

sin(θij/2)
sin θij

(mi × (mj ×mi) +mj × (mi ×mj))
)

(30)

Now noting that for any unit vectors a, b ∈ R3 with angle θ between them, we have

a× (b× a) = b− (cos θ)a (31)

which can be derived from the triple product expansion identity a × (b × c) = b(a · c) − c(a · b). So applying this to
mi × (mj ×mi) and mj × (mi ×mj)

q ◦m =
∑
i

α2
imi +

∑
i<j

αiαj

(
(mi +mj) cos

(
θij
2

)

+
sin (θij/2)

sin θij
(mj − cos θijmi +mi − cos θijmj)

) (32)

and finally using the double angle formulas,

q ◦m =
∑
i

α2
imi +

∑
i<j

αiαj

(
(mi +mj) sec

(
θij
2

))
(33)

combining, thus

q ◦m =
∑
i,j

αiαjmi sec

(
θij
2

)
(34)

Since sec(θ) ≥ 0 ∀θ ∈
(
−π2 ,

π
2

)
, the coefficients are ≥ 0 ∀θij ∈ (−π, π). Therefore, q ◦m is a linear combination of the

vectors mi with nonnegative coefficients.

2. Translational Alignment Derivations and Proofs
Recall that we reuse notation in this section from the rotational section to simplify the discourse and draw parallels to the

rotational problem.

2.1. Linear upper bound on f

For any z ∈ [a, b] where 0 ≤ a ≤ b, we can express z as a convex combination of a and b, i.e.

z = λa+ (1− λ)b =⇒ λ =
z − a
b− a

. (35)



And, since f(z) = ez is convex,

f(z) = f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) (36)

= z

(
f(b)− f(a)

b− a

)
+

(
bf(a)− af(b)

b− a

)
. (37)

In the main text, since we know `kk′ ≤ zkk′(q) ≤ ukk′ for any q ∈ Q, we can use the above upper bound formula with
a = `kk′ and b = ukk′ .

2.2. Proof of Theorem 2 (translational convergence)

For translation, we have a similar result to Lemma 1, but it is much simpler to show; the diagonal of each rectangular cell
is simply 1/2 that of the previous refinement level, i.e.

γN−1
2

= γN = ΓN =
ΓN−1

2
. (38)

Theorem 2. Suppose γ0 is the initial diagonal of the translation cell in R3, and let

N , max
{

0,
⌈
log2

γ0
ε

⌉}
. (39)

Then at most N refinements are required to achieve a translational tolerance of ε, and BB has complexity O(ε−3).

Proof. If γ0 is the initial diagonal length, then γN = 2−Nγ0. So to achieve a translational tolerance of ε, we need that
γN ≤ ε, meaning

2−Nγ0 ≤ ε =⇒ N ≥ log2

γ0
ε
. (40)

Since N must be at least 0 and must be an integer, the formula in the theorem follows. As the branching factor at each
refinement is 8, the BB algorithm at level N will have examined at most M cells, where

M = 1 + 8 + 82 + · · ·+ 8N =
8N+1 − 1

7
. (41)

Substituting the result in Eq. (39) (and noting 8 = 23), we have

M = O

((γ0
ε

)3)
= O

(
ε−3
)
. (42)

3. Additional Results
Noise and Outliers The robustness to noise and outliers is important for any alignment method. In Fig. 2 we show the
angular and rotational BB+ICP alignment error as a function of noise standard deviation and outlier ratio for the alignment
of the full Stanford Bunny. The synthetic data is created by first adding isotropic Gaussian noise and then sampling random
outlier points uniformly inside a sphere with twice the radius of the size of the Stanford Bunny. Standard deviations and
translational errors are reported as a fraction of the diameter of the original Stanford Bunny point cloud. The error statistics
over 336 instantiations of the alignment problem show the robustness of our method to unrealistic amounts of corruption
(high noise, 60% outliers). Above a noise threshold, surface normal computation fails leading to high alignment error.

Gazebo Summer Dataset [1] The dataset consists of 33 scans taken in a mostly unstructured outdoor setting with trees,
bushes and a gazebo. We evaluate the alignment in the same way as the Apartment dataset. Figure 3 shows some alignments
of the point cloud obtained via BB+ICP. The high degree of clutter, noise and outliers is clearly visible. Despite those difficult
conditions, the coarse alignment is correct. Table 1 lists results for the alignment of all scans in the dataset. It is clear that
all algorithms have a harder time aligning the scans. Still BB performs well both in speed and quality. Specifically BB gets
the coarse alignment right in almost all cases whereas GOGMA fails in 10% more cases. Looking at the alignments this is
due to GOGMA vertically flipping scans (this is also indicated by the high mean rotational error), whereas BB has no trouble
finding the right upward direction due to the strong upward surface normal cluster from the ground.



Figure 2: Evaluation of translational and rotational error under additive isotropic Gaussian noise and outliers. Shaded areas
show one standard deviation around the mean (solid line). The median errors are indicated with dashed lines.

Method BBλ BBλ+ GOGMA GOGMA+ GoICP FT
Rotation [◦] 3.92 2.01 19.3 16.5 58.3 5.58
Translation [m] 0.25 0.11 1.45 0.71 0.66 0.68
Inlier % C 96.8 96.8 87.1 90.3 41.9 87.1
Inlier % M 77.4 87.1 54.8 87.1 38.7 80.7
Inlier % F 19.4 67.7 16.1 83.9 6.45 51.6
Time [s] 23.70 28.3 105 164 138 242

Table 1: Gazebo Summer [1] results for BB, GOGMA, GoICP, FT. We report rotational (Rot), translational (Tran), timing,
and inlier (Inl) percentages for (C)oarse (2m; 10◦), (M)edium (1m; 5◦) and (F)ine (0.5m; 2.5◦) alignment.

Figure 3: Depiction of the BB+ICP alignment of the first 6 LiDAR scans of the Gazebo Summer dataset [1]. While details
of the alignment could be improved, the overall large scale alignment is inferred correctly. Different colors indicate distinct
LiDAR scans.
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