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A. Network Architecture Details

Our network is a chain of encoder-decoder networks.

Figures 15 and 16 explain the details of the two encoder-

decoders used in the bootstrap and iterative net part. Fig. 17

gives implementation details for the refinement net.

The encoder-decoders for the bootstrap and iterative net

use additional inputs which come from previous predic-

tions. Some of these inputs, like warped images or depth

from optical flow, need to be generated with special layers,

which we describe here.

Warped second image We warp the second image using

the predicted or generated optical flow field. We compute

all values with bilinear interpolation and fill values that fall

outside the image boundaries with zeros.

After warping with ground truth optical flow, the second

image should look like the first image with the exception

of occlusion regions. Comparing first image and warped

image allows to assess the quality of the optical flow.

Flow from depth and motion We generate an optical

flow estimate based on a depth and camera motion estimate

for the first encoder-decoder of the iterative net. This op-

tical flow can be used as an initial estimate, which can be

further improved by the iterative net.

Depth from optical flow and motion In contrast to gen-

erating optical flow from a depth map and camera motion,

computing depth from optical flow and camera motion is

not straightforward. To compute the depth value of a pixel,

we first project the corresponding point in the second im-

age to the epipolar line and then triangulate the 3D point to

retrieve the depth.

This generated depth map provides an estimate which

combines optical flow and camera motion. Note that us-

ing the estimated camera motion here ensures that the depth

values of the estimate are correctly scaled according to the

camera motion. In case of ground truth optical flow and

camera motion this yields the true depth map.
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Figure 1. Learning rate schedule. During the training of each

encoder-decoder a multistep learning rate is applied. At each step

the learning rate is reduced by 20%.

B. Training Schedule

We train our model from scratch for 3200k iterations

in total. Fig. 1 shows our learning rate schedule. From 0

to 1000k iterations we sequentially train the four encoder-

decoders, then the two encoder-decoders of the iterative net

are jointly trained to iteration 2600k, finally we train the

refinement net for another 600k iterations. This training

schedule can be further optimized.

We normalize all point-wise losses with the number of

pixels. The loss weights for flow, flow confidence, depth

and normals are 1000, 1000, 300 and 100 respectively. The

loss weight for the scale invariant gradient loss on flow is

1000. For depth we weight the scale invariant gradient loss

with 1500, because we consider sharp edges and smooth

surfaces more important for depth prediction. The transla-

tion and rotation losses are weighted with a factor of 15 and

160 respectively to balance their importance with respect to

the other losses.

C. Datasets

Our training procedure requires ground truth camera

poses and ground truth depth for the first image.

The datasets we use for training can be divided in two

groups: synthetic and real datasets. Real datasets provide

natural images, but do only provide sparse pseudo ground

truth due to measurement and reconstruction errors. Syn-

thetic datasets provide perfect ground truth but often fea-
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ture unrealistic images. Since no single dataset is perfect,

we train on a set of five datasets with different proper-

ties. Tab. 1 provides an overview of the properties of the

datasets. Figures 11, 12, 13, 14 and 3 show examples from

the datasets we used.

SUN3D The dataset from [11] is a set of video sequences

with camera poses and depth maps. Camera poses and

depth maps are inaccurate because they have been created

via a reconstruction process. The raw sensor data for this

dataset was recorded with a structured light depth sensor

which reports absolute depth values, thus the reconstruction

scale for this dataset is known. The dataset features indoor

scenes of offices, apartments, hotel rooms and university

buildings.

To sample image pairs suitable for training, we apply a

simple filtering process. To avoid image pairs with large

pose or depth error, we filter out pairs with a large photo-

consistency error. We also filter out image pairs with less

than 50% of the pixels from the first image visible in the

second image. Further we discard images with a baseline

smaller than 5cm.

We have split the datasets into training and testing

scenes. The training set contains 253 scenes and the test

set contains 16 scenes. For training we sample a total of

117768 image pairs from all image sequences. For testing

we generate a diverse set of 80 image pairs which mini-

mizes overlap within image sequences. This way we obtain

a small test set with large diversity.

RGB-D SLAM The dataset from [9] is a set of video se-

quences with camera poses and depth maps. Camera poses

are accurate since they come from an external motion track-

ing system. The scale of the reconstructed camera poses

is known. Depth maps have been recorded with a struc-

tured light sensor and are therefore affected by measure-

ment noise and limited to a fixed depth range. Due to the

use of an external tracking system, the data is restricted to

indoor scenes in a lab environment.

We use the same sampling process as for SUN3D. The

training set contains 45276 image pairs, while the test set

features 80 diverse image pairs.

MVS In contrast to SUN3D and RGB-D SLAM, MVS is

a dataset with outdoor images. We use the Citywall and

Achteckturm datasets provided with [4] and the Breisach

dataset from [10] for training. We compute depth maps and

camera poses with the Multiview Reconstruction Environ-

ment by [4].

For testing we use datasets provided with the COLMAP

software from Schönberger et al. [7, 8], which are called

Person-Hall, Graham-Hall, and South-Building. These

Figure 2. Annotation volumes for the Blendswap dataset. Left:

We annotate each scene with volumes that describe valid camera

positions (white box) and valid positions for the ”look at” target

(orange box). Right: Image from a randomly sampled camera

and target.

datasets show the exterior of the eponymous buildings. Fur-

ther, we have recorded a small scene which shows a sculp-

ture and can be seen in the third row of Fig. 13. We use

the COLMAP software for computing the depth and cam-

era poses for these scenes.

Due to the scale ambiguity in the reconstruction pro-

cess, the absolute scale is unknown. The datasets are small

and not very diverse. Again we use the same image pair

sampling strategy as for the previous datasets. We sample

16152 image pairs for training and 66 image pairs for test-

ing.

Scenes11 Scenes11 is a synthetic dataset with randomly

generated geometry and objects from ShapeNet [3]. All

scenes have a ground plane which makes the scenes look

like outdoor scenes. We use the open source software

Blender [2] for rendering.

Due to the synthetic nature of the dataset, the accuracy of

the camera poses and depth maps is perfect. Disadvantages

are the artificial look and a simplistic model of the camera

movement. We sample camera parameters from Gaussian

and uniform distributions, which bears the risk of learning

the underlying model by heart when training only on this

data.

The absolute scale for this dataset is meaningless since

the scale of the objects is arbitrary and inconsistent. We

generate 239508 image pairs from 19959 unique scenes for

training and 128 image pairs from 128 unique scenes for

testing.

Blendswap The blendswap dataset is an artificial dataset

generated with 150 scenes from blendswap.com.

Scenes range from cartoon-like to photorealistic.

Blendswap contains some outdoor scenes, but a large

part of the scenes shows interiors. We annotated each

of the 150 scenes with a camera volume, which marks

free space that can be used for camera placement, and a

”look at” volume for placing target points defining the



Figure 3. Images and the corresponding depth maps from the

Blendswap dataset. Blendswap contains 150 distinct scenes, with

a large variety of different styles and settings.

camera viewing direction. We sample camera positions and

targets uniformly over the annotated volumes. Fig. 2 shows

an example of an annotated scene and an automatically

generated image. When sampling a camera pair we use the

same target point but add individual uniform noise to its

position. The noise level depends on the distance of each

camera to this target point.

We sample 34320 image pairs from the 150 annotated

scenes for training. Fig. 3 shows images from this dataset

and the corresponding ground truth depth maps. The gen-

erated data set contains a diverse set of scenes with many

realistic images and actual ground truth data, and remedies

the main disadvantages of Scenes11. However, adding new

scenes to this dataset requires manual annotation, which is a

time-consuming process. Due to the small number of scenes

we only use this data for training. We plan to gradually ex-

tend this dataset in the future with more scenes.

Generalization test data In Section 6.4.1 of the main pa-

per, we compare the generalization capabilities of DeMoN

and other learned approaches. To evaluate this, we recon-

structed seven self-recorded scenes using COLMAP [7, 8],

and generated 16 views of these scenes with correspond-

ing depth maps. Examples are shown in Fig. 4. Content of

the scenes is very different from the data DeMoN has been

trained on: Close-ups of unique objects such as a miniature

bridge, figurine, and ship, as well as a person. We also in-

clude some outdoor scenes containing different architecture

as well as 90-degree rotated images and a unique sculpture.

Scale normalization: To compensate for the inherent

scale ambiguity of our reconstruction, we compute all er-

rors in Tab. 3 of the main paper with optimally scaled depth

predictions. The scale slog = exp( 1
n

∑
log ẑ − log z) is

computed to minimize the mean logarithmic difference be-

tween ground truth and prediction.

D. Experiments with Ground Truth

DeMoN iterates between estimating optical flow and es-

timating depth and camera motion. This is supposed to

gradually refine the depth and motion estimates. The ar-

Figure 4. Samples of the seven scenes used for the generalization

experiment.

chitecture is justified by a strong mathematical relation be-

tween optical flow, depth and camera motion. Optical flow

can be computed analytically from depth and motion, and

vice-versa, depth and motion can be computed from optical

flow in non-degenerate cases. But can a convolutional net-

work fully exploit this mathematical relation? Given per-

fect optical flow, can it indeed estimate depth and camera

motion very accurately?

To answer these questions we trained networks to esti-

mate depth and motion from ground truth optical flow, and,

other way round, to estimate optical flow given ground truth

depth and motion. Results on the SUN3D dataset are re-

ported in Table 2. In all cases performance dramatically

improves when the ground truth input is provided, com-

pared to only taking an image pair as input. The network

can use an accurate optical flow estimate to refine the depth

and motion estimates, and vice-versa.

At the same time, this experiment provides an upper

bound on the performance we can expect from the current

architecture. DeMoN’s performance is still far below this

bound, meaning that the difficulties come from estimating

optical flow, depth and motion from images, and not from

converting between these modalities.

Ground truth Depth Motion Flow

flow dep+mot L1-inv sc-inv L1-rel rot tran EPE

yes no 0.007 0.058 0.066 - - -

yes no - - - 0.340 2.235 -

no no 0.058 0.163 0.603 4.472 41.766 -

no yes - - - - - 0.005

no no - - - - - 0.027

Table 2. The effect of providing the ground truth optical flow

(flow) or ground truth depth and motion (dep+mot) to the network.

A network can be trained to produce very accurate depth and mo-

tion estimates given the ground truth optical flow, and vice-versa,

a network can estimate the optical flow very well given the ground

truth depth and motion.



Dataset Perfect GT Photorealistic Outdoor scenes Rot. avg Rot. stddev Tri. angle avg Tri. angle stddev

SUN3D no yes no 10.6 7.5 5.2 4.6
RGBD no yes no 10.4 8.3 6.8 4.5
Scenes11 yes no (yes) 3.3 2.1 5.3 4.4
MVS no yes yes 34.3 24.7 28.9 17.5
Blendswap yes (yes) (yes) 23.1 17.1 20.1 13.6

Table 1. Training dataset properties. Perfect GT: Perfect ground truth camera poses and depth maps are only available for the synthetic

datasets Scenes11 and Blendswap. Photorealistic: The synthetic Blendswap dataset features some photorealistic scenes, while Scenes11

looks entirely artificial. The other datasets use real images. Outdoor scenes: MVS is the only outdoor dataset with real images. Images

from Scenes11 show wide open spaces, similar to outdoor data. Blendswap contains some outdoor scenes, but is biased towards indoor

environments. Rotation and Triangulation angle: Camera rotation and triangulation angles are given in degree. The rotation and

triangulation angle is similar for SUN3D and RGB-D SLAM. Both datasets are indoor video sequences. MVS and Blendswap also show

similar characteristics, which means that the sampling procedure for Blendswap mimics the camera poses of a real outdoor dataset.

GT Iter 0 Iter 1 Iter 2 Iter 3

Figure 5. Effect of the iterative net on depth values.

Depth Motion Flow

L1-inv sc-inv L1-rel δ<1.25 δ<1.252 δ<1.253 rot tran EPE

It
er

at
io

n

0 0.029 0.145 0.244 0.587 0.844 0.940 2.18 20.27 0.030

1 0.024 0.130 0.207 0.679 0.891 0.961 1.94 17.25 0.020

2 0.022 0.131 0.187 0.688 0.900 0.982 1.87 18.31 0.019

3 0.021 0.132 0.179 0.698 0.912 0.981 1.80 18.81 0.019

4 0.021 0.133 0.184 0.690 0.908 0.975 1.79 18.94 0.019

5 0.021 0.133 0.185 0.692 0.910 0.970 1.79 19.65 0.019

Table 3. The effect of iterative refinement of the predictions. The

performance is computed on the SUN3D dataset. The results do

not significantly improve beyond 3 iterations. The threshold met-

ric is defined as the percentage of pixel zi so that max( zi
ẑi
,
ẑi

zi
) =

δ < thr.

E. Effect of Iterative Refinement

The quantitative evaluation of iterative refinement is

shown in Table 3. Both depth and motion accuracy signifi-

cantly improve up to iteration 3.

Fig. 5 shows the effect on one sample of the MVS

dataset. The iterative net improves the depth values, which

is visible as a reduced distortion of the building in the point

cloud.

F. Error Distributions

We show the per-pixel error distributions and means for

Base-Oracle and DeMoN on the MVS and SUN3D dataset

in Fig. 6. Note that the average values in Tab. 2 in the main

paper have been computed over test samples and here we

average over pixels.

The distributions on the highly textured MVS show that

Base-Oracle produces many very accurate depth estimates,

while the distribution of errors is more spread for DeMoN.

This is an effect of Base-Oracle using higher resolution im-

ages (640 × 480) than DeMoN (256 × 192). Base-Oracle

also uses the motion ground truth, which again helps finding

the correct depth.

For SUN3D distributions are more similar and the reso-

lution adavantage of Base-Oracle is less pronounced. This

can be explained by the more homogeneous image regions,

which make matching difficult on this dataset. Base-Oracle

suffers significantly more from outliers than DeMoN. De-

pending on the task higher depth accuracy can be more im-

portant than less outliers. It also shows the importance of

lifting restrictions on the camera intrinsics and supporting

higher resolutions in future works.

We show the distributon of the motion errors for Base-

FF, Base-Mat-F and DeMoN in Fig. 7. Base-FF uses the

FlowFields algorithm for correspondence search [1] and our

baseline implementation using the noramlized 8-point algo-

rithm [5] and RANSAC to compute the relative camera mo-

tion. Base-Mat-F uses the optical flow of DeMoN predicted

after three iterations for correspondences and uses the Mat-

lab implementations of [6] and RANSAC to estimate the

camera motion.

The distribution is similar for Base-FF and DeMoN on

the MVS dataset with Base-FF being slightly more accurate

for rotation and DeMoN being more accurate for transla-

tion. Base-Mat-F is less accurate than both comparisons.

On SUN3D DeMoN can estimate the motion more accu-

rately than the comparisons. Base-FF produces some out-

liers for rotation while DeMoN and Base-Mat-F have al-

most no outliers. Base-FF also fails to estimate accurate

translation directions on SUN3D. We show some failure

cases in Fig. 8. On SUN3D baselines are usually smaller

than on MVS.
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Figure 6. Error histograms and mean for per pixel depth errors

(L1-inv and L1-rel) on MVS (top) and SUN3D (bottom). The last

bin includes samples with errors above of the shown range. The

second mean value in parenthesis excludes the last bin of the re-

spective histogram.
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Figure 7. Error distributions for rotation and translation on MVS

(top) and SUN3D (bottom). The translation error is given as angle

because the length of the translation is 1 by definition. The last bin

includes samples with errors above of the shown range.

G. Qualitative Depth Estimation Results

We show more qualitative results of depth estimation on

the test sets of SUN3D, RGB-D SLAM, MVS, Scenes11

and NYUv2 in Fig. 11 to Fig. 10 respectively. Our method

presents smooth depth estimations while preserving sharp

edges. This advantage can be observed more clearly by the

(a) DeMoN: tran 24.096, rot 0.878

Base-FF: tran 71.871, rot 2.564

(b) DeMoN: tran 4.804, rot 1.237

Base-FF: tran 56.948 , rot 2.087

(c) DeMoN: tran 11.725, rot 1.628

Base-FF: tran 110.516, rot 15.197

Figure 8. Comparison of the motion error (in degrees) in some

special cases. The classic method Base-FF fails when the baseline

of the camera motion is small shown in (a) and the scenes have

many homogeneous regions like (b) and (c).

point clouds, which we show in Fig. 9.
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Figure 9. Qualitative point clouds comparison on NYUv2 and MVS.

Image1 Image2 GT Liu-Indoor Eigen-VGG DeMoN

Figure 10. Qualitative depth prediction comparison on NYUv2. The Base-Oracle prediction is not available because there is no motion

ground truth. Our method fails to predict the upper bodies of the persons in the fourth example because the persons move between the two

frames.



Image1 Image2 GT Base-O Liu-Indoor Eigen-VGG DeMoN

Figure 11. Qualitative depth prediction comparison on SUN3D. The Base-Oracle performs badly due to inaccurate motion ground truth.

Eigen-VGG, which was trained on NYUv2, works well for many images. SUN3D is similar to the NYUv2 dataset shown in Fig. 10.

Image1 Image2 GT Base-O Liu-Indoor Eigen-VGG DeMoN

Figure 12. Qualitative depth prediction comparison on RGB-D SLAM. Our method can deal with very thin objects (third row).



Image1 Image2 GT Base-O Liu-Outdoor Eigen-VGG DeMoN

Figure 13. Qualitative depth prediction comparison on MVS. The single image methods Liu-Outdoor and Eigen-VGG do not generalize

well to new datasets. The depth maps show coarse outliers caused by hallucinating wrong depth values at object contours like the street

sign in the third row or the windows in the last row. The Base-Oracle method performs well on this data. Most outliers fall into image

regions not visible in the second image.

Image1 Image2 GT Base-O Liu-Outdoor Eigen-VGG DeMoN

Figure 14. Qualitative depth prediction comparison on Scenes11. Base-Oracle and DeMoN give the best results on this dataset.
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Figure 15. Encoder-decoder architecture for predicting optical flow. The depicted network is used in the bootstrap net and the iterative net

part. Inputs with gray font (depth and normals, flow from depth & motion, warped 2nd image) are only available for the iterative net. The

encoder-decoder predicts optical flow and its confidence at two different resolutions. The first prediction is directly appended to the end of

the encoder and its output resolution is 8× 6. We also apply our losses to this small prediction. We also feed this prediction back into the

decoder part after upsampling it with an upconvolutional layer. The second prediction is part of the decoder and predicts all outputs with a

resolution of 64 × 48, which is four times smaller than the original image dimensions (256 × 192). Due to this resolution difference we

concatenate inputs from the previous network at the respective spatial resolution level within the encoder. We use direct connections from

the encoder to the decoder, which allows the decoder to reuse features from the respective spatial resolution levels from the encoder.
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Figure 16. Encoder-decoder architecture for predicting depth and camera motion. The depicted network is used in the bootstrap net and

the iterative net part. Inputs with gray font (previous motion, depth from flow & motion) are only available for the iterative net. The

encoder-decoder predicts the depth map, the normals and the camera motion for an image pair. Similar to the encoder-decoder shown in

Fig. 15, this encoder-decoder features direct connections and integrates previous network inputs at the corresponding resolution level into

the encoder. This encoder-decoder predicts a camera motion vector and depth and normal maps. While all predictions share the encoder

part, the camera motion prediction uses a separate fully connected network for its prediction. The depth and normal prediction is integrated

in the decoder part. The scale of the depth values and the camera motion are highly related, therefore the motion prediction part also

predicts a scale factor that we use to scale the final depth prediction.
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Figure 17. Encoder-decoder architecture for refining the depth prediction. The refinement network is a simple encoder-decoder network

with direct connection. Input to this network is the first image and the upsampled depth map with nearest neighbor interpolation. Output is

the depth map with the same resolution as the input image.
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