End-to-end representation learning for Correlation Filter based tracking
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C. Correlation Filter formulation
C.1. Kernel linear regression

First, consider the general linear regression problem of
learning the weight vector w that best maps each of n ex-
ample input vectors z; € R? to their target y; € R. The
squared error can be expressed

ii(Ti_z_iXTiz 1
o 2w —wi)" = o[ X w —y (1)
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where X € R%*" is a matrix whose columns are the exam-
ple vectors and y € R"™ is a vector of the targets. Incorpo-
rating regularization, the problem is

argmin 5 [|XTw —y* + 3w]* . (2)
Kernel linear regression can be developed by writing this as
a constrained optimization problem
argmin o [r]? + 3w
/ ; 3
subjectto r=X w—y
and then finding a saddle point of the Lagrangian
L(w,r,v) = = |r|I>+ 3 |w?+ 0" (r— X w+y) . @
The final solution can be obtained from the dual variable
w = %X v (@)
and the solution to the dual problem is

v=2K"ly 6)

where K = LXTX + Al is the regularized kernel matrix.
It is standard to introduce a scaled dual variable o = %v
that defines w as a weighted combination of examples

- 1
w:Xa:E az; with a=—-K 1ty . (7)
n
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*Equal first authorship.

The kernel matrix is n x n and therefore the dual solution
is more efficient than the primal solution, which requires
inversion of a d X d matrix, when the number of features d
exceeds the number of examples n.

C.2. Single-channel Correlation Filter

Given a scalar-valued example signal = with domain U
and corresponding target signal y, the Correlation Filter w
is the scalar-valued signal

. 1 2 A 2
arg min %Hw*Z*yH +5”“’” ®)

where signals are treated as vectors in RY and the circular
cross-correlation of two signals w x «x is defined

(w*x)u] = Zw[t]x[u—i—tmod m] Yueld . (9)
teu

The solution from the previous section can then be used by
defining X to be the matrix in R¥*¥ such that X7Tw =
w . It follows that the kernel matrix K belongs to RY*¢
and the dual variable « is a signal in RY.

The key to the correlation filter is that the circulant
structure of X enables the solution to be computed effi-
ciently in the Fourier domain. The matrix X has elements
X|u,t] = z[u + t mod m]. Since the matrix X is symmet-
ric, the template w is obtained as cross-correlation

w=Xa=ax*zx . (10)

The linear map defined by the kernel matrix K is equivalent
to convolution with a signal k&

Kz=kxz Vz (11)
which is defined k = Lz %z + AJ, since

Vz: FXTXz=F((z%x)*x)
oZ*orT =F(zx(z*x)) . (12)



Therefore the solution is defined by the equations

k=21zxz+ A6
k‘*a:%y (13)

and the template can be computed efficiently in the Fourier
domain

k=13 0F+ A1
a=1k"oy (14)
D=a"oF

C.3. Multi-channel Correlation Filter

There is little advantage to the dual solution when train-
ing a single-channel Correlation Filter from the circular
shifts of a single base example. However, the dual formula-
tion is much more efficient in the multi-channel case [2].

For signals with k channels, each multi-channel signal is
a collection of scalar-valued signals x = (x4, ..., %), and
the data term becomes

1>, wp * ap —yl> = 130, X w, —ylI> (15)

and each channel of the template is obtained from the dual
variables

wp = Xpa = axxp (16)

The solution to the dual problem is still o« = %K‘ly, how-
ever the kernel matrix is now given

K= 1ZpoTXp+)\I (17)

T n

and the linear map defined by this matrix is equivalent to
convolution with the signal

k:%prp*xp—&—)\(S . (18)
Therefore the solution is defined by the equations

k=53 apxap+ A6
k*a:%y (19)
Wp =0a*xTp VD

and the template can be computed efficiently in the Fourier
domain

k

}sz Tyox, + Al
15107 (20)
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Wy, =0a"oT, Vp .
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It is critical that the computation scales only linearly with
the number of channels.

D. Adjoint of the differential

Consider a computational graph that computes a scalar
loss £ € R. Within this network, consider an intermediate
function that computes y = f(z) where x € X = R™ and
y € Y = R". Back-propagation computes the gradient with
respect to the input V¢ € X from the gradient with respect
to the output V¢ € V.

The derivative 0 f (x) /0 is a matrix in R"*™ whose -
th element is the partial derivative 0 f;(x)/0z;. This matrix
relates the gradients according to

Lo otay . 0f(x)
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From this it is evident that the back-propagation map is the
linear map which is the adjoint of that defined by the deriva-
tive. That is, if the derivative defines the linear map

_ 0f(@)
ox

J(u) u (22)
then the back-propagation map is the unique linear map J*
that satisfies

(J*(v),uy = (v,J(u)) YueX,ve)y (23)

and the gradient with respect to the input is obtained V¢ =
J*(Vy0). This is the core of reverse-mode differentia-
tion [1].

An alternative way to obtain the linear map defined by
the derivative is to use differential calculus. Whereas the
derivative represents this linear map as a matrix with respect
to the standard bases, the differential represents the linear
map as an expression df (x; dx). This is valuable for work-
ing with variables that possess more interesting structure
than simple vectors. This technique has previously been
used for matrix structured back-propagation [3]. In this pa-
per, we use it for circulant structured back-propagation.

E. Back-propagation for multi-channel case

The differentials of the equations that define the multi-
channel CF in eq. 19 are

dk = %Zp(dxp * Tp + Tp * dxp)
dk*a—ﬁ—k*da:%dy 24)

dwy, =daxx, +axdr, Vp,
and taking the Fourier transforms of these equations gives
dk = %Zp (dx,, 0 Zp + T3 o dayp)
da =k "o [Ldy—dkoa] (25)

cjz\upzcja O§p—|—&*og§p Vp .



Now, to find the adjoint of the map dx — dk, we re-
arrange the inner product

(Fdk, F.J, (dz)) = <EE, LSS (day 08, + &0 a}p)>
= L%, [y, dk 0 3p) + (dk 0 Ty, day)]
=3, {dz,, 2 Re{dk} o T,) (26)
to give the back-propagation map
Vol = 23, 0Re{Vil} Vp . @27)

The linear map dk,dy +— da is identical to the single-
channel case. To find the adjoint of the map dx, da — dw,
we examine the inner-product

(dw, J3(de, da)) = 3, (dwy, da o, +a* o da)
- <@, >, duw, o §p> + 3 (dw, 0@, dxy) . (28)

giving the back-propagation maps

Vol =5,%0 (Vu, 0)F (29)
Vo l=aoVyl Vp. (30)

Finally, combining these results gives the procedure for
back-propagation in the multi-channel case

Val = 3,70 (T 0)°

Vil =3k oVal

Vil = —k " 0d" oVl

Vel =0V, 0+ 23,0 Re{Vil} Vp .

€2y

Again, it is important that the computation scales only lin-
early with the number of channels.

F. Hyperparameter optimization

The hyperparameters that define the simplistic tracking
algorithm have a significant impact on the tracking accu-
racy. These include parameters such as the penalty for
changes in scale and position and the learning rate of the
template average. Choosing hyperparameters is a difficult
optimization problem: we cannot use gradient descent be-
cause the function is highly discontinuous, and each func-
tion evaluation is expensive because it involves running a
tracker on every sequence from multiple starting points.

For the experiments of the main paper, where we sought
to make a fair comparison of different architectures, we
therefore used a natural choice of hyperparameters that
were not optimized for any particular architecture. Ideally,
we would use the optimal hyperparameters for each vari-
ant, except it would have been computationally prohibitive
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Figure 1: Empirical distribution of the average overlap for
the hyperparameter search.

to perform this optimization for every point in every graph
in the main paper (multiple times for the points with error
bars).

To achieve results that are competitive with the state-of-
the-art, however, it is necessary to optimize the parameters
of the tracking algorithm (on a held-out validation set).

To find optimal hyperparameters, we use random search
with a uniform distribution on a reasonable range for each
parameter. Specifically, we sample 300 random vectors of
hyperparameters and run the evaluation described in Sec-
tion 4.1 on the 129 videos of our validation set. Each
method is then evaluated once on the test sets (OTB-2013,
OTB-50 and OTB-100) using the hyperparameter vector
which gave the best results on the validation set (specified in
Table 1). We emphasize that, even though the ground-truth
labels are available for the videos in the benchmarks, we do
not choose hyperparameters to optimize the results on the
benchmarks, as this would not give a meaningful estimate
of the generalization ability of the method.

Note that this random search is performed after training
and is only used to choose parameters for the online track-
ing algorithm. The same network is used for all random
samples. The training epoch with the best tracking results
on the validation set (with natural tracking parameters) is
chosen.

Figure 1 shows, for each method, the empirical distribu-
tion of results (in terms of average overlap) that is induced
by the distribution of tracking parameters in random search.

G. Detailed results on the OTB benchmarks

Figures 2 to 7 show the curves produced by the OTB
toolkit for OTB-2013/50/100, of which we presented a sum-
mary in the main paper.



avg. overlap best overlap scale step scale penalty scale L.r. win. weight template L.r.

CFNet-convl 44.8 46.5 1.0355 0.9825 0.700 0.2375 0.0058
CFNet-conv2 47.8 49.5 1.0575 0.9780 0.520 0.2625 0.0050
Baseline+CF-conv3 47.7 49.9 1.0340 0.9820 0.660 0.2700 0.0080
CFNet-conv5 46.9 48.5 1.0310 0.9815 0.525 0.2000 0.0110
Baseline-conv5 47.8 49.2 1.0470 0.9825 0.680 0.1750 0.0102

Table 1: Average and best overlap scores over 300 random sets of hyperparameters. Values of hyperparameters associated to
the best performance are also reported. These parameters describe: the geometric step to use in scale search, the multiplicative
penalty to apply for changing scale, the learning rate for updating the scale, the weight of an additive cosine window that
penalizes translation, and the learning rate for the template average.
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Figure 2: OTB-2013 success rate.
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Figure 3: OTB-2013 precision.
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Figure 4: OTB-50 success rate.
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Figure 5: OTB-50 precision.
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Figure 6: OTB-100 success rate.
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