
From local to global: Edge profiles to camera motion in blurred images
SUPPLEMENTARY MATERIAL

In the supplemental material, we begin with a high level
description of the contents of the main paper. We then pro-
vide complete derivation of the relation between edge pro-
files and MDF (Section 3) as well as proofs for claims 1,
2, and 3 in the main paper. This is followed by additional
implementation details, performance comparisons for large
blur kernels, and run-time comparisons for all the methods.
We also provide performance comparisons on additional ex-
ample images taken from existing real image datasets.

S1. High level description of the contents in
main paper

In Section 3, we derive the relation between the local
edge profiles present in a motion blurred image and the un-
derlying global camera motion. However, there are practi-
cal difficulties in using such a relation to perform camera
motion estimation. To solve issues related to alignment of
edge-profiles, we propose a solution in Section 4.1, and the-
oretically validate the applicability of the solution under the
assumption of small in-plane rotations. In Section 4.2, a
computationally efficient form of an edge-profile constraint
is derived for direct camera motion estimation. In Section
5, we embed this constraint into an existing blind deblurring
method to improve its performance further.

S2. Additional derivations and proofs

S2.1. Edge profiles to camera motion

We have already discussed in the main paper that, the
PSF at any location in the blurred image can be related to
the MDF as

k(x,u) =

∫
Ψ(γ)δ(u− (Hγx− x))dγ (S1)

Also, the differential of edge profile (along the direction
perpendicular to θ i.e., θ + π/2) at x can be expressed as
the Radon transform of the PSF at x along θ as

dEθ,x(ρ) =

∫ ∫
kx(u, v)δ(ρ− u cos θ − v sin θ)dudv

(S2)

Combining the relations in Eq. (S1) and Eq. (S2) we can
obtain the relation between MDF and the edge profile as

dEθ,x(ρ) =

∫ ∫ ( ∫
γ∈Γ

Ψ(γ)δ(u− (Hγx− x))dγ

)
δ(ρ− u cos θ − v sin θ)dudv (S3)

=

∫
γ∈Γ

Ψ(γ)

(∫ ∫
δ(u− (Hγx− x))

δ(ρ− u cos θ − v sin θ)dudv

)
dγ (S4)

=

∫
γ∈Γ

Ψ(γ)δ(ρ−(Hγ
xx−x) cos θ−(Hγ

y x−y) sin θ)dγ

(S5)

S2.2. Proof for claim 1

Claim 1: For model1, if the in-plane rotational motion
undergone by the camera is small then it can be shown that
the centroid of MDF vector will correspond to the centroid
of PSF i.e., the centroid pose of the camera obtained from
MDF will map points to the centroid of PSFs generated by
the camera motion.
Proof : If NT is the total number of poses over which

the MDF is defined, then the centroid (tcx, t
c
y, θ

c
z) of MDF

vector w can be found as follows

tcx =

NT∑
p=1

tpxw(tpx, t
p
y, θ

p
z) (S6)

tcy =

NT∑
p=1

tpyw(tpx, t
p
y, θ

p
z) (S7)

θcz =

NT∑
p=1

θpzw(tpx, t
p
y, θ

p
z) (S8)



The relation between the coordinates of both latent image
and its warped form (warped according to the camera pose
(tpx, t

p
y, θ

p
z)) is given by

 xp

yp
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y
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 (S9)
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=
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qtpx
d
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qtpy
d
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y
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 (S11)

where d is the perpendicular distance of the scene-plane
from the image-plane. K is the intrinsic matrix of the cam-
era defined by the focal length q.

K =

 q 0 0
0 q 0
0 0 1

 (S12)

Let us denote the MDF weight w(tpx, t
p
y, θ

p
z) corresponding

to the pose p as wp for simplicity. Note that wp is a scalar
value representing the fraction of time that the camera spent
at pose p. The x-coordinate of the centroid (uc, vc) of psf
kx is given by,

uc =
∑
u

∑
v

ukx(u, v) (S13)

Consider the discrete form of Eq. (S1) given by

kx(u, v) = k(x,u) =

NT∑
p=1

wpδ(u− (Hpx− x)) (S14)

From Eq. (S13) and Eq. (S14) we can perform the follow-
ing simplifications.

uc =
∑
u

∑
v

u

( NT∑
p=1

wpδ(u− (Hpx− x))

)
(S15)

=

NT∑
p=1

wp
(∑

u

∑
v

uδ(u− (Hpx− x))

)
(S16)

=

NT∑
p=1

wp(Hp
xx− x) (S17)

=

NT∑
p=1

wpHp
xx−

NT∑
p=1

wpx (S18)

=

NT∑
p=1

wpHp
xx− x (S19)

where to arrive at Eq. (S19) we have used the fact that MDF
vector (w) sums to 1. When the in-plane rotational motion
of camera is small, we use the approximations sin(θ) ' θ
and cos(θ) ' 1. Now using Eq. (S11) we can obtain the
following results.

NT∑
p=1

wpHp
xx =

( NT∑
p=1

Hp.wp
)
x

x (S20)

=

( NT∑
p=1


cos(θpz) sin(θpz)
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d
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d

0 0 1
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)
x

x (S21)

=
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q
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d

0 0 1


x

x = Hc
xx (S25)

where Hc is the homography corresponding to the cen-
troid of MDF. The equivalence in Eq. (S20) is valid since
the homography warp is a linear transform for the consid-
ered 3D approximation and wp is a scalar value. From Eq.
(S19) and Eq. (S25) we obtain the following desired result.

uc = Hc
xx− x (S26)

A similar result can be shown for the case of vc too, proving
that the centroid of MDF will correspond to the centroid of
PSF, if in-plane rotation of camera is small.
Discussion: In the approximation of the term∑NT

p=1 cos(θpz)wp with cos(
∑NT

p=1 θ
p
zw

p) that we em-
ploy in the proof for Claim 1, the resulting error in centroid
depends both on the spatial location in the image as well
camera pose weights. The maximum error in alignment
will result when pose weights are non-zero for extreme
poses and are equal in magnitude. Previous studies ([2, 8])
have shown that natural camera shake contains rotations
less than 5 degrees. Here we analyze the error in centroid
(under the worst-case scenario) that will be introduced by
the approximation in our claim. Assuming camera rotation
up to 5 degrees, wθ=0 = wθ=5 = 0.5 and 0 elsewhere
(since

∑NT

p=1 w
p = 1), the error in centroid (induced by

cos(θ) approximation) at the border pixel (i.e., pixel at y
= 1000, assuming an image of resolution of 2000 × 2000
with the origin at the center of the image) will be 0.951
which will increase to 0.992 if the error introduced by
sin(θ) is also taken into account. The blur kernel length
for this case will be around 90 pixels which signifies the
fact that the centroid error is relatively very small. Fig. 2 in
the main paper shows our preliminary analysis (for image
size 690 × 460) on the error behavior in CME while using
the proposed centroid alignment. To address the case of
high-resolution images, we repeated the analysis for the
extreme case of wθ=0 = wθ=5 = 0.5, and image resolution
of 2000×2000. The NCC value (please refer to Section 4.1
in the main paper for details) for CME using edge profiles
far-away from center was found to be 0.996 whereas the
same with those near to the center was 0.9993. This shows
that the centroid error has negligible impact on CME. In
practice, one can reduce this effect further by giving more

weights to the constraint derived from edge profiles close
to the center.

S2.3. Proof for claim 2

Claim 2: The centroid aligned PSFs correspond to a
camera motion and a latent image both of which are con-
sistent with the given blurred image and correct upto a ho-
mography.
Proof : Let us consider a collection ofm PSFs k1, .., km

obtained from locations x1, .., xm in the blurred image.
What we already know is that the centroid of all these m
PSFs corresponds to Hc. i.e.,

ucki + xi = xcki = Hcxi (S27)

where ucki is the centroid of PSF ki and xcki is the corre-
sponding image-coordinate. Let there are n active (with
non-zero weights) poses in the MDF w0, with H1, ..,Hn

being the corresponding homographies. Similarly, any
point (ujki ) in the blur kernel ki is related to the kernel loca-
tion xi through the corresponding homography Hj as

ujki + xi = xjki = Hjxi (S28)

Combining Eq. (S27) and Eq. (S28) we get the following
relation,

xjki = Hj(Hc)−1xcki (S29)

Without loss of generality, let us assume that we will align
the PSFs by shifting their centroid to (0,0), i.e., points in
the PSF will get shifted along X and Y by the current PSF
centroid ucki . Therefore, in the centroid aligned PSF, the
point ujki will get shifted to ujki −ucki . Using Eq. (S27), Eq.
(S28), and Eq. (S29) we obtain the following results.

ujki − ucki = Hj(Hc)−1xcki − xi − ucki (S30)

= Hj(Hc)−1xcki − xcki (S31)

This shows that the centroid aligned PSFs corresponds to
a different MDF wc0 (formed of Hj(Hc)−1) and latent im-
age Lc (defined on the coordinates xcki ) both of which are
consistent with the same blurred image.

S2.4. Proof for claim 3

Claim 3: The absolute value of differential of edge pro-
file is equivalent to the absolute gradient of a blurred image
(at the location of the edge profile) normalized by the dif-
ference between the two homogeneous colors involved.
Proof : The equivalence in claim 3 is illustrated in Fig.

S1. Consider two adjacent pixels along a line L over which
an edge profile exists in the image. We can express them
in terms of the corresponding colors from homogeneous re-
gions (similar to Eq. (1)) as

L(i) = αic1 + (1− αi)c2 (S32)



(a) (b)
Figure S1. (a) Example to show that extreme points of edge pro-
files at different directions need not correspond to the same homo-
graphies, the plot showing in green and magenta are the value of
differential of edge profile obtained by projecting PSF onto X and
Y axis respectively. (b) The gradient along the direction of edge
profile extracted from a corresponding blurred image (The equiv-
alence between (a) and (b) is discussed in claim 3 and its proof).

L(i+ 1) = αi+1c1 + (1− αi+1)c2 (S33)

The first-order gradient of L at i is given by

OL = L(i+ 1)− L(i) (S34)
= (αi+1 − αi)c1 − (αi+1 − αi)c2 (S35)
= (c1 − c2)Oα (S36)

where (Oα) is the gradient of edge profile. Eq. (S36)
implies that the gradient of edge profiles is equivalent to
the normalized form of the first-order gradient of BI taken
along the direction of the edge profile. From Eq. (4), Eq.
(5), Eq. (6), and Eq. (S36) we can see that

OBI = (c1 − c2)P (S37)

i.e., gradient of blurred image along the direction of edge
profile is equivalent to the projection of PSF onto the line
along the same direction scaled by (c1−c2). Further, in Eq.
(S37) we can replace OBI and (c1− c2) with their absolute
values (to form an equivalent condition), since the signs of
both terms will cancel each other for the two possible sce-
narios (c1 < c2) and (c1 > c2). Thus

|OBI | = |(c1 − c2)|P (S38)

S3. Implementation details
In our experiments, we use the 3D trajectory approxima-

tion of model2. To improve the speed of camera motion
estimation by taking advantage of computations in scale
space, we constrain the motion estimation only over a set
of relevant poses for subsequent iterations. While moving
across the scale we interpolate the MDF to find initial kernel
estimate for new scale. The presence of our new constraint
rules-out the possibility of getting stuck in local minima,
since it directly relates step edges in latent image onto the

edge profiles in the blurred image. Nevertheless, it is better
to perform the camera motion estimation in a scale space
fashion to speed up the entire process by estimating only
over a constrained set from the whole camera pose space.

The parameter settings used for obtaining the results for
our proposed method are the following. We have used λ =
0.01 for the proposed method EpAlone. For Xu + Ep, we
use λf = 0.003, λIp = 1, λw = 0.01, and nmax = 5.

S4. Large blur kernels
Large blur kernels of size more than 50 pixels are un-

common in practice. For such cases, the improvement of
our approach over [10] is expected to be marginal, since the
edge profile constraint will contain only few edges. Nev-
ertheless, for completeness, we have provided performance
comparison over the full dataset of [5] in Fig. S2. As can be
observed, the inclusion of large blur kernels leads to only a
small reduction in PSNR improvement for our method. In
Fig. S3, we have provided one example for large blur kernel
to illustrate the fact that our result is qualitatively compara-
ble to that of [10].

Figure S2. Quantitative evaluation on all kernels from [5].

S5. Running time
In Table S1, we list the running times of our implemen-

tation for space invariant kernel estimation. Since EpAlone
does not have explicit edge prediction stages and alternat-
ing minimizations, kernel estimation is much faster as com-
pared to other methods. As can be observed, our novel way
of incorporating the proposed constraint reduces the com-
putational complexity of our proposed method EpAlone
over its space invariant counterpart proposed in [1]. Also
the computational complexity of the state-of-the-art method
in [6] which performs equally well as compared to Xu + Ep,
is significantly high as compared to Xu + Ep.

In Table S2 we list the running times of our proposed
approaches for performing space variant CME. Again,
EpAlone is more efficient than other approaches. As is
evident from Table S2, Xu + Ep is able to perform non-
uniform deblurring with only a marginal increase in compu-
tational complexity over [10]. Running time reported here is



(a) Motion blurred image (b) Xu et al. [9] (c) Pan et al. [6] (d) Xu + Ep
Figure S3. Example image from the benchmark dataset [5], corresponding to large blur kernel.

obtained using Matlab implementation of all the algorithms,
and on a PC with Intel i5 CPU and 16GB memory.

Table S1. Run time (in seconds) for the proposed methods and
existing methods on SI deblurring for an image of size 800 × 800
and kernel of size 27× 27

EpAlone Xu +
Ep

Cho [1] Xu [10] Pan [6]

17.32 35.63 80.99 22.02 1564.78

Table S2. Run time (in seconds) for the proposed methods for non-
uniform deblurring

Image size Kernel
size

EpAlone Xu +
Ep

Xu [10]

366 ×274 11 × 11 29.4 84.05 77.15
768 × 512 9 × 9 45.9 170.95 152.99
768 × 512 23 × 23 74.2 296.2 286.91

S6. Additional results
In this section, we give performance comparison over

more examples from real image datasets of existing works.



(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a)

(b)

(c)
(g) Patches from (a-c)

(d)

(e)

(f)
(h) Patches from (d-f)

Figure S4. Real example on SI deblurring using image from dataset of [1].

(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a) (b)

(c)
(g) Patches from (a-c)

(d) (e)

(f)
(h) Patches from (d-f)

Figure S5. Real example on SI deblurring using image from dataset of Cho et al. [1].



(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a) (b)

(c)
(g) Patches from (a-c)

(d) (e)

(f)
(h) Patches from (d-f)

Figure S6. Real example on SI deblurring using image from dataset of Cho et al. [1].

(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a)
(b)

(c)

(g) Patches from (a-c)

(d)

(e)

(f)

(h) Patches from (d-f)
Figure S7. Real example on SI deblurring using image from dataset of Cho et al. [1].



(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a)

(b)

(c)

(g) Patches from (a-c)

(d)

(e)

(f)

(h) Patches from (d-f)
Figure S8. Real example on SI deblurring using image from dataset of [1].

(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a)
(b)

(c)

(g) Patches from (a-c)

(d)

(e)

(f)

(h) Patches from (d-f)
Figure S9. Real example on SI deblurring using image from dataset of Cho et al. [1].



(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a) (b)

(c)
(g) Patches from (a-c)

(d) (e)

(f)
(h) Patches from (d-f)

Figure S10. Real example on SI deblurring using image from dataset of Cho et al. [1].

(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a)

(b)

(c)

(g) Patches from (a-c)

(d)

(e)

(f)

(h) Patches from (d-f)

Figure S11. Real example on SI deblurring using image from dataset of [1].



(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a) (b)

(c)
(g) Patches from (a-c)

(d) (e)

(f)
(h) Patches from (d-f)

Figure S12. Real example on SI deblurring using image from dataset of Cho et al. [1].

(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a) (b)

(c)
(g) Patches from (a-c)

(d) (e)

(f)
(h) Patches from (d-f)

Figure S13. Real example on SI deblurring using image from dataset of [1].



(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep (a) (b) (c)
(g) Patches from (a-c)

(d) (e) (f)
(h) Patches from (d-f)

Figure S14. Real example on SI deblurring using image from dataset of [1].

(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a) (b)

(c)
(g) Patches from (a-c)

(d) (e)

(f)
(h) Patches from (d-f)

Figure S15. Real example on SI deblurring using image from dataset of [1].



(a) Motion blurred image (b) Xu et al. [10] (c) Cho et al. [1] (d) Pan et al. [6]

(e) EpAlone (f) Xu + Ep

(a)

(b)

(c)
(g) Patches from (a-c)

(d)

(e)

(f)
(h) Patches from (d-f)

Figure S16. Real example on SI deblurring using image from dataset of Cho et al. [1].

(a) Motion blurred image (b) Xu et al. [10] (c) Gupta et al. [2] (d) Whyte et al. [8]

(e) Pan et al. [6] (f) EpAlone (g) Xu + Ep

(a) (b) (c) (d)

(e) (f) (g)
(h) Patches from (a-g)

Figure S17. Real example on SV deblurring using image from dataset of Gupta et al. [2].



(a) Motion blurred image (b) Xu et al. [10] (c) Gupta et al. [2]

(d) EpAlone (e) Xu + Ep

(a) (b) (c)

(d) (e)
(f) Patches from (a-e)

Figure S18. Real example on SV deblurring using image from dataset of Gupta et al. [2].

(a) Motion blurred image (b) Xu et al. [10] (c) Gupta et al. [2] (d) Whyte et al. [8]

(e) Pan et al. [6] (f) EpAlone (g) Xu + Ep

(a) (b) (c) (d)

(e) (f) (g)
(h) Patches from (a-g)

Figure S19. Real example on SV deblurring using image from dataset of Gupta et al. [2].



(a) Motion blurred image (b) Xu et al. [10] (c) Gupta et al. [2]

(d) EpAlone (e) Xu + Ep

(a)

(b)

(c)

(d)

(e)

(f) Patches from (a-e)
Figure S20. Real example on SV deblurring using image from dataset of Gupta et al. [2].

(a) Motion blurred image (b) Xu et al. [10] (c) Harmeling et al. [3] (d) Schuler et al. [7]

(e) EpAlone (f) Xu + Ep

(a)

(b)

(c)

(g) Patches from (a-c)

(d)

(e)

(f)

(h) Patches from (d-f)
Figure S21. Real example on SV deblurring using image from dataset of Harmeling et al. [3].



(a) Motion blurred image (b) Xu et al. [10] (c) Harmeling et al. [3]

(d) EpAlone (e) Xu + Ep

(a) (b) (c)

(d) (e)
(f) Patches from (a-e)

Figure S22. Real example on SV deblurring using image from dataset of Harmeling et al. [3].

(a) Motion blurred image (b) Xu et al. [10] (c) Whyte et al. [8] (d) Hirsch et al. [4]

(e) Schuler et al. [7] (f) EpAlone (g) Xu + Ep

(b) (c) (d)

(e) (f) (g)
(h) Patches from (b-g)

Figure S23. Real example on SV deblurring using image from dataset of Whyte et al. [8].
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