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1. Experiments on 2D registration

We performed experiments on 2D registration using 4
shapes in Fig. 1 from [2, 4]1. The shapes were normalized
by removing the mean and scaling so that the largest dimen-
sion fitted [−1, 1]. We used the same baselines and perfor-
mance metrics as in the main paper. Since MATLAB does
not provide ICP for 2D case, we used the code of IRLS and
set the cost function to least-squared error as ICP. In this 2D
experiment, we set the error threshold for successful regis-
tration to 0.05 of the model’s largest dimension.

(a) (b) (c) (d)

Figure 1. Point clouds for 2D registration experiment.

Training of DO: For each shape, we generated N =
10000 samples to train 30 maps as its SUM. Each sample
is generated by adding the following perturbations: (1) Ro-
tation and translation: We added a random rotation within
85 degrees and translation within [−0.4, 0.4]2. (2) Noise
and outliers: We added Gaussian noise of variance of 0.03
to each point, and added outliers of 0 to NM

2 points in
[1.5, 1.5]2. (3) Incomplete model: We randomly sampled
a point and removed from 0% to 60% of its closest points.
For 2D case, we found that the shape in Fig. 1d had very dif-
ferent densities in different parts, which causes the denser
area to dominate the values in h. To alleviate this problem,
in each training iteration, we preprocessed the features h(i)

by normalizing each element to lie in [0, 1] before learning
an update map. We trained a total of K = 30 maps, and set

1Available from http://www.cs.cmu.edu/ ytsin/KCReg/KCReg.zip and
http://cise.ufl.edu/ anand/students/chui/rpm/TPS-RPM.zip

2Recall that NM is the number of points in the model point cloud.

σ2 = 0.5 and λ = 2 × 10−2. During test, we set the maxi-
mum number of iteration to 100. Training time for DO for
all shapes took less than 45 seconds, except for the shape
in Fig. 1d which took 147 seconds due to large number of
points.

Test scenarios: We evaluated the performance of the
alignment method by varying four types of perturbations:
(1) the standard deviation of the noise ranging from 0 to
0.1, (2) the initial angle from 0 to 180 degrees, (3) the ratio
of outliers from 0 to 2, and (4) the ratio of incomplete scene
shape from 0 to 0.7. While we perturbed one parameter, the
values of the other parameters were set as follows: noise SD
= 0, initial angle uniformly sampled from 0 to 60 degrees,
ratio of outliers = 0, and ratio of incompleteness = 0. For 2D
case, we did not vary the number of scene points (as in 3D
case) because each point cloud was already a sparse outline
of its shape. The ratio of outlier is the fraction of the number
of points NM of each shape. All generated scenes included
random initial translation within [−0.4, 0.4]2. A total of 50
rounds were run for each variable setting for each shape.

Result: Fig. 2 shows the results for 2D registration. In
terms of speed, DO performed faster than CPD and GMM-
Reg, while being slower than ICP and IRLS. In terms of
successful registration, ICP and IRLS had good success
rates only when the perturbations and initial angles were
small. GMMReg performed well in almost all cases, while
CPD did not do well when there were a large number of
outliers. DO, which learns the update steps from training
data, obtained high success rates in almost all cases, but it
does not do as well as CPD and GMMReg when the noise
was extremely high. This is because the noise we generated
was Gaussian noise, which is the noise model assumed by
both CPD and GMMReg. This shows that when the prob-
lem is accurately modelled as an optimization problem, the
optimum is generally the correct solution. GMMReg also
outperformed DO when the outliers were high which may
be due to its annealing steps. On the other hand, DO ob-
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(d) Incomplete Scene

Removed part
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Figure 2. Results for 2D registration experiment. (Top) Examples of scene points with different perturbations. (Middle) Success rate.
(Bottom) Computation time.

tained the best success rate in terms of initial angles and
incomplete scenes. These perturbations cannot be easily
modelled, and this result shows that it is beneficial to learn
to obtain a good solution from training data as done by DO.

2. Proof of convergence of training data
In this section, we provide the proof of theorem 1 (re-

stated below) from the main paper.

Theorem 1. (Strict decrease in training error under a
sequence of update maps (SUM)) Given a training set
{(x(i)

0 ,x
(i)
∗ ,h

(i))}Ni=1, if there exists a linear map D̂ ∈
Rp×f such that, for each i, D̂h(i) is strictly monotone at
x
(i)
∗ , and if ∃i : x

(i)
k 6= x

(i)
∗ , then the update rule:

x
(i)
k+1 = x

(i)
k −Dk+1h

(i)(x
(i)
k ), (1)

with Dk+1 ⊂ Rp×f obtained from least-squared regression
(Eq. (3) in the main paper), guarantees that the training
error strictly decreases in each iteration:

N∑
i=1

‖x(i)
∗ − x

(i)
k+1‖

2 <

N∑
i=1

‖x(i)
∗ − x

(i)
k ‖

2. (2)

Proof. We assume that not all x(i)
∗ = x

(i)
k , otherwise all

x
(i)
∗ are already at their stationary points. Thus, there exists

an i such that (x
(i)
k − x

(i)
∗ )>D̂h(i)(x

(i)
k ) > 0. We need to

show that:

N∑
i=1

‖x(i)
∗ − x

(i)
k+1‖

2
2 <

N∑
i=1

‖x(i)
∗ − x

(i)
k ‖

2
2. (3)

This can be shown by letting D̄ = αD̂ where:

α =
β

γ
, (4)

β =

N∑
i=1

(x
(i)
k − x

(i)
∗ )>D̂h(i)(x

(i)
k ), (5)

γ =

N∑
i=1

‖D̂h(i)(x
(i)
k )‖2. (6)

Since there exists an i such that (x
(i)
k − x

(i)
∗ )>D̂h(x

(i)
k ) >

0, both β and γ are both positive, and thus α is also posi-
tive. Next, we show that the training error decreases in each
iteration as follows:



N∑
i=1

‖x(i)
∗ − x

(i)
k+1‖

2 =

N∑
i=1

‖x(i)
∗ − x

(i)
k + Dk+1h

(i)(x
(i)
k )‖2

≤
N∑
i=1

‖x(i)
∗ − x

(i)
k + D̄h(i)(x

(i)
k )‖2

=

N∑
i=1

(
‖x(i)
∗ − x

(i)
k ‖

2 + ‖D̄h(i)(x
(i)
k )‖2

+2(x
(i)
∗ − x

(i)
k )>D̄h(i)(x

(i)
k )

)
=

N∑
i=1

‖x(i)
∗ − x

(i)
k ‖

2

+

N∑
i=1

‖αD̂h(i)(x
(i)
k )‖2︸ ︷︷ ︸

α2γ

+2α

N∑
i=1

(x
(i)
∗ − x

(i)
k )>D̂h(i)(x

(i)
k )︸ ︷︷ ︸

=−β

=

N∑
i=1

‖x(i)
∗ − x

(i)
k ‖

2 + α2γ − 2αβ

=

N∑
i=1

‖x(i)
∗ − x

(i)
k ‖

2 +
β2

γ
− 2

β2

γ

=

N∑
i=1

‖x(i)
∗ − x

(i)
k ‖

2 − β2

γ︸︷︷︸
>0

<

N∑
i=1

‖x(i)
∗ − x

(i)
k ‖

2.

The second inequality is due to Dk+1 being the optimal
matrix that minimizes the squared error. Note that Thm. 1
does not guarantee that the error of each sample i reduces
in each iteration, but guarantees the reduction in the average
error.

3. Exponential and logarithm maps

In this section, we provide explicit form of exponential
maps and logarithm maps for SE(3) and SE(2). Interested
readers can refer to the derivations in [1, 3].

3.1. 3D case : SE(3)

First, we define some notations. For y ∈ R3, [·]× :
R3 → R3×3 denotes the cross product matrix with its ar-

gument vector:

[y]× =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

 , (7)

and [·]4 : R3×3 → R3 be its inverse operation, i.e.,
[[y]×]4 = y. We parametrize x as:

x =

[
u
ω

]
∈ R6,u ∈ R3, ω ∈ R3. (8)

3.1.1 Exponential map

The exponential map:

exp

([
[ω]× u
0>3 1

])
=

[
R t
0>3 1

,

]
(9)

can be computed in the following steps:

θ = ‖ω‖, (10)

V = I3 +

(
1− cos θ

θ2

)
[ω]× +

(
θ − sin θ

θ3

)
[ω]2×, (11)

R = I3 +

(
sin θ

θ

)
[ω]× +

(
1− cos θ

θ2

)
[ω]2×, (12)

t = Vu. (13)

3.1.2 Logarithm map

The logarithm map:

log

([
R t
0>3 1

])
=

[
[ω]× u
0>3 1

]
, (14)

can be compute in the following steps:

θ = arccos

(
trace(R)− 1

2

)
, (15)

ln(R) =
θ

2 sin θ
(R−R>), (16)

ω = [ln(R)]4, (17)

V−1 = I3 −
1

2
[ω]× +

1

θ2

(
1− θ sin θ

2(1− cos θ)

)
[ω]2×,

(18)

u = V−1t. (19)

3.2. 2D case : SE(2)

We parametrize x ∈ R3 as:

x =

[
u
θ

]
,u ∈ R2, θ ∈ R. (20)



3.2.1 Exponential map

The exponential map:

exp

 0 −θ u1
θ 0 u2
0 0 1

 =

[
R t
0>2 1

]
(21)

can be computed in the following steps:

R =

[
cos θ − sin θ
sin θ cos θ

]
, (22)

V =

[
sin θ
θ − 1−cos θ

θ
1−cos θ

θ
sin θ
θ

]
, (23)

t = Vu. (24)

3.2.2 Logarithm map

The logarithm map:

log

([
R t
0>2 1

])
=

 0 −θ u1
θ 0 u2
0 0 1

 , (25)

can be computed in the following steps:

θ = atan2(R21, R11) (26)

A =
sin θ

θ
, (27)

B =
1− cos θ

θ
, (28)

V−1 =
1

A2 +B2

[
A B
−B A

]
, (29)

u = V−1t (30)
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