Learning Adaptive Receptive Fields for Deep Image Parsing Network Supplementary File

Table 1. Specifications of network structures used in this paper, including the network backbone, single-path baseline model and single-path modified model.

		Network Backbone			
conv 1_1	conv 1_2	output dim: 64, ke	ernel size: 3, pad: 1		
poc	ol 1	MAX pooling, stride:	2, kernel size: 2, pad: 1		
conv 2_1	conv 2_2	output dim: 128, k	ernel size: 3, pad: 1		
poc	012	MAX pooling, stride:	2, kernel size: 2, pad: 1		
conv 3_1	conv 3_3	output dim: 256, k	ernel size: 3, pad: 1		
poc	013	MAX pooling, stride:	2, kernel size: 2, pad: 1		
conv 4_1	conv 4_3	output dim: 512, k	ernel size: 3, pad: 1		
poc	ol 4	MAX pooling, stride:	1, kernel size: 2, pad: 1		
conv 5_1	conv 5_3	output dim: 512, kernel	size: 3, pad: 2, dilation: 2		
poc	15	MAX pooling, stride:	1, kernel size: 3, pad: 1		
		Single-path Baseline Model	Single-path Modified Model		
batch	norm		default parameters		
inflatio	n layer		\checkmark		
	output dim	10	024		
conv 6	kernel size	4 (Helen), 3 (VOC)			
	pad	(dilation*(kernel size-1))/2			
7	output dim	512 (Helen),	1024 (VOC)		
conv /	kernel size		1		
interpolat	ion layer		\checkmark		
output layer	output dim	11 (Helen)	, 21 (VOC)		

Table 2. Quantitative evaluation results of baseline models and modified models on Helen [2, 5] dataset. '*dilation*' means dilation values in fc6 layer. '*rf-fc6*' means the extent of receptive field in fc6 layer. '*' means the inflation factor begins to be updated after 10000 iterations in training.

			Single P	ath Baselin	e Model			
networ	k setting	;s			F-se	core		
dilation	rf-	fc6	eye	eyebrow	nose	mouth	face	ovearall
2	2	60	0.8372	0.7842	0.9341	0.9073	0.9417	0.8995
4	3	08	0.8459	0.7839	0.9378	0.9103	0.9435	0.9012
6	3	56	0.8355	0.7787	0.9385	0.9135	0.9453	0.9001
8	4	04	0.8321	0.7703	0.9384	0.9093	0.9453	0.8983
10	4	52	0.8322	0.7713	0.9355	0.9068	0.9436	0.8965
12	5	00	0.8299	0.7665	0.9332	0.8991	0.9433	0.8924
14	5-	48	0.8232	0.7486	0.9276	0.8989	0.9414	0.8849
			Single P	ath Modifie	ed Model			
init dilation	f	rf-fc6	eye	eyebrow	nose	mouth	face	ovearall
2	2.44	236	0.8315	0.7795	0.9280	0.9052	0.9384	0.8964
2	0.88*	284	0.8295	0.7754	0.9297	0.9077	0.9389	0.8952
6	1.82	292	0.8433	0.7843	0.9310	0.9140	0.9415	0.8995
8	2.61	284	0.8466	0.7861	0.9365	0.9148	0.9148	0.9021
10	2.44	316	0.8437	0.7765	0.9374	0.9114	0.9446	0.9000
12	3.60	292	0.8412	0.7822	0.9367	0.9114	0.9441	0.9005

Table 3. Quantitative evaluation results of multi-paths versions of baseline models and modified models on Helen dataset [2, 5]. Each parallels in the modified network is initialized with dilation value of 8.

		Multi	-paths Ba	seline Mod	lel			
	network settir	ngs			F-sc	core		
model	dilation	rf-fc6	eye	eyebrow	nose	mouth	face	ovearall
bipath tripath	4,6 4,6,8	308,356 308,356,404	0.8368 0.8315	0.7757 0.7638	0.9309 0.9257	0.9104 0.9044	0.9423 0.9402	0.8964 0.8894
		Multi	-paths Mo	odified Mod	lel			
model	f	rf-fc6	eye	eyebrow	nose	mouth	face	ovearall
bipath tripath	3.32,1.27 1.61, 1.12, 1.11	268,372 340, 396, 396	0.8401 0.8413	0.7888 0.7763	0.9316 0.9365	0.9129 0.9098	0.9418 0.9430	0.9008 0.8983

Table 4. Quantitative evaluation results of our method and other face parsing models. Our method has achieved state-of-the-art performance on face parsing task.

Madal	F-score							
Widdei	eye	brows	nose	mouth	face	overall		
Liu et al.[3]	0.770	0.640	0.843	0.742	0.886	0.738		
Smith et al.[5]	0.785	0.722	0.922	0.857	0.882	0.804		
Liu et al.[4]	0.768	0.713	0.909	0.841	0.910	0.847		
Ours	0.8466	0.7861	0.9365	0.9148	0.9148	0.9021		

Single Path I aero bike bird boat bottle bus cat cat c 67.4 24.4 75.3 54.9 64.1 79.8 72.6 76.1 2 68.4 25.3 76.6 56.7 68.7 83.0 74.0 78.6 3 69.2 25.5 77.0 58.2 67.7 84.3 74.9 79.8 3 69.2 25.5 77.0 58.2 67.7 84.2 75.5 79.8 3 69.2 25.0 74.1 57.2 69.6 84.4 76.3 79.8 3 75.6 79.9 2 3 67.9 3 67.9 2 67.0 74.1 54.3 67.8 83.6 74.9 79.8 2 67.4 79.4 79.4 2 66.4 2 74.9 79.8 2 67.4 2 67.6 79.4 2 66.4 2 74.9 79.8 79.4 2 66.4 79.4 76.9 79.4 2 66.2 <t< th=""></t<>

Table 5. Ouantitative evaluation results of baseline models and modified models on VOC 2012 validation set [1]. d means dilation values in fc6 layer. '*rf-fc6*' means the extent of

Figure 1. Face parsing results on Helen dataset [2, 5]. (a): original images. (b): ground truth. (c): results from baseline model with dilation value of 4 (with best manually selected receptive field). (d): results from modified model with initial dilation value of 12. (e): results from baseline model with dilation value of 12. Results in (d) and (e) show the improvements brought by our method. Smaller semantic areas have better parsing results, especially **eyebrows and nose**. **Face boundaries** are smoother and more accurate. Results in (c) and (d) show that our models have very close performance with manually designed models, which means our method can replace previous receptive field design process. Best view in color.

Figure 2. The typical fluctuation of f during training in general image parsing task. f come from the modified models with initial dilation values of: (a)4, (b)6, (c)16, (d)18, (e)20. Unlike the training process in face parsing task, f have more noticeable fluctuations due to great data variance on VOC dataset.

Figure 3. The fluctuation of f during training in general image parsing task with the same initial network settings. Only changes in the first 2,500 iterations are plotted here. The initial dilation value is 4, which is much smaller than the optimal value. In this case, f sometimes may trapped in local minimums and stay within the vicinity of 1. Small initial dilation values are not preferable.

Figure 4. The fluctuation of f during training in general image parsing task with the same initial network settings. Only changes in the first 3,000 iterations are plotted here. The initial dilation value is 18. Due to the great variance during optimization, f will fall into a range of values, instead of stopping at a specific number.

References

- M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, June 2010. 3
- [2] V. Le, J. Brandt, Z. Lin, L. D. Bourdev, and T. S. Huang. Interactive facial feature localization. In 12th European Conference on Computer Vision ECCV, pages 679–692, 2012. 2, 4
- [3] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. IEEE Transaction on Pattern Analysis and Machine Intelligence, TPAMI, 33(12):2368–2382, 2011. 2
- [4] S. Liu, J. Yang, C. Huang, and M. Yang. Multi-objective convolutional learning for face labeling. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, pages 3451–3459, 2015. 2
- [5] B. M. Smith, L. Zhang, B. Jonathan, Z. Lin, and J. Yang. Exemplar-based face parsing. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013, pages 3484–3491, 2013. 2, 4