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1. Quasi-isometry inference with Batch Nor-
malization

For batch normalization (BN) layer, its Jacobian, denot-
ed as J, is not only related with components of activations
(d components in total), but also with samples in one mini-
batch (size of m).

Let x(k)j and y(k)i be kth component of jth input sample
and ith output sample respectively and given the indepen-

dence between different components, ∂y
(k)
i

∂x
(k)
j

is one of m2d

nonzero entries of J. In fact, J is a tensor but we can express
it as a blocked matrix:

J =


D11 D12 · · · D1m

D21 D22 · · · D2m

...
...

. . .
...

Dm1 Dm2 · · · Dmm

 (1)

where each Dij is a d× d diagonal matrix:

Dij =



∂y
(1)
i

∂x
(1)
j

∂y
(2)
i

∂x
(2)
j

. . .
∂y

(d)
i

∂x
(d)
j


(2)

Since BN is a component-wise rather than sample-wise
transformation, we prefer to analyse a variant of Eq. 1 in-
stead of Dij . Note that by elementary matrix transforma-
tion, the m2 d× d matrices can be converted into d m×m
matrices:

J =


J11 0 · · · 0
0 J22 · · · 0
...

...
. . .

...
0 0 · · · Jdd

 (3)

and the entries of each Jkk is

∂yj
∂xi

= ρ

[
∆(i = j) − 1 + x̂ix̂j

m

]
(4)

The notations of ρ, ∆(·) and x̂k have been explained in our
main paper and here we omit the component index k for
clarity. Base on the observation of Eq. 4, we separate the
numerator of latter part and denote it as Uij = 1 + x̂ix̂j .

Let x̂ = (x̂1, x̂2, ..., x̂m)T , e = (1, 1, ..1)T , we have

U = eeT + x̂x̂T (5)

and
Jkk = ρ(I − 1

m
U) (6)

Recall that for any column vector v, rank(vvT ) = 1.
According to the subadditivity of matrix rank [1], it implies
that

rank(U) = rank(eeT + x̂x̂T ) ≤

rank(eeT ) + rank(x̂x̂T ) = 2
(7)

Eq. 7 tells us that U actually only has two nonzero eigen-
values, say λ1 and λ2, and we can formulate U as follow:

U = PT


λ1

λ2
0

. . .
0

P (8)

combined with Eq. 6, finally we get the equation of Jkk
from the eigenvalue decomposition view, which is

J = PT ρ


1 − λ1

m

1 − λ2

m
1

. . .
1

P (9)

1



To show that Jkk probably is not full rank, we formulate
the relationship between U2 and U

U2 = (eeT + x̂x̂T )(eeT + x̂x̂T ) = eeT eeT + eeT x̂x̂T

+x̂x̂T eeT + x̂x̂T x̂x̂T = meeT + (

m∑
i=1

x̂i)ex̂T

+(

m∑
i=1

x̂i)x̂eT + (

m∑
i=1

x̂2i )x̂x̂T

= mU + (

m∑
i=1

x̂i)ex̂T + (

m∑
i=1

x̂i)x̂eT + (

m∑
i=1

x̂2i −m)x̂x̂T

(10)
Note that x̂i ∼ N(0, 1), so we can regard the one-order

and second-order accumulated items in Eq. 10 as approxi-
mately equaling the corresponding one-order and second-
order statistical moments for relatively large mini-batch,
from which we get U2 ≈ mU.

The relationship implies that λ21 ≈ mλ1 and λ22 ≈ mλ2.
Since λ1 and λ2 cannot be zeros, it concludes that λ1 ≈
λ2 ≈ m therefor 1 − λ1

m ≈ 0 and 1 − λ2

m ≈ 0 if batch size
is sufficient in a statistical sense.
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