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This document provides a list of supplemental materials
that accompany the main paper.

e SpecTN Initialization - We discuss technical details
about how we initialize SpecTN including how we
generate a set of pre-computed functional maps (see
Section A).

e Implementation Details - We describe implemen-
tation details as well as hyperparameter choices in
Section B.

e Partial Shape Part Segmentation - We provide
additional per-category IoU for partial shape part
segmentation task and compare our approach with
ACNN [1] in Section C.

e Spectral Dilated Kernel Parametrization - In Sec-
tion D, We provide more diagnosis of dilated kernel
parametrization in analogy to Table 4 of the main
paper. Differently, we use vertex geometric features
as network input and these features are computed as is

in [4].

e Robustness to Sampling Density Variation - We
show the robustness of our approach w.r.t point cloud
density variation in Section E.

e Normal Prediction Another graph vertex function
prediction task is conducted in Section F to validate
the generalizability of our approach to very local
properties. We predict shape vertex normals and the
results are visualized in Figure 2.

A. SpecTN Initialization

A set of precomputed functional maps are used for
SpecTN pretraining. We mentioned in the main paper
that the functional map C from S to the average shape
S could be induced from the spatial correspondences
between S and S, by the primal-dual relationship. Once
we have the bases of S and S, as well as the rough
spatial correspondences between them from the volumetric
occupancy, the functional map can then be discovered by
the approach proposed in [3].
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To be specific, we use B, to denote the volumetric
reparametrization of graph Laplacian eigenbases B for
each shape S, and use B, to denote the graph Laplacian
eigenbases of S. B, and B, both lie in the volumetric
space and their spatial correspondence is natural to acquire.
The functional map C,,. aligning B, with B, could be
computed through simple matrix multiplication Cp,.. =
BI'B,. The computed functional map will serve as
supervision and SpecTN is pretrained to minimize the loss
function ||C' — Cpre||%.

It is worth mentioning that, if the shapes under consid-
eration are diverse in topology and geometry, i.e. shapes
from different categories, aligning every shape to a single
“average” shape might cause unwanted distortion. There-
fore we leverage multiple “average” shapes {S;}"_; and
use a combination of their spectral domains as the canonical
domain. Specifically, we assign each shape S to its closest
“average” shape under some global similarity measurement
(i.e. lightfield descriptor) and use {a;}?_, to represent such
assignment, namely a; = 1if S is assigned to S;anda; =0
otherwise. Also we use B,; to denote the spectral bases of
S;. Then the functional map C,.. for each shape S could be
computed through Cpy.e = [a1By1 a2 Bz .. ay By’ B,
The SpecTN is pretrained to predict a functional map which
only synchronizes spectral domain of each shape to its most
similar “average” shape.

B. Implementation Details

In most of our experiments, input shapes are represented
as point cloud with around 2000 — 3000 points. Given
an input shape point cloud, we build a k-nearest neighbor
graph G first. We use k& = 6 in all our experiments. Then
a graph weight matrix W could be constructed in which
Wi = ﬁ if point 7 and j are connected, O otherwise. We

then comphte the symmetric normalized graph Laplacian L
as L = I — D=Y2WD~1/2 where D is the degree matrix
and I denotes identity matrix. Since many natural functions
we care about could be depicted by a small number of
low-frequency Laplacian eigenbases, we compute and use
the smallest 100 eigenvalues as well as the corresponding
eigenbases for each L in all our experiments.



Layer 1 2 3 4 5 6 7 8 9 10

Dilation () 1 1 4 4 16 16 64 64 1 1
SpecTN No No No No No No Yes Yes No No
#Kernel Param 7 1 7 1 7 1 45 45 7 1
#0ut Channel c ¢ ¢ ¢ 2 2 2¢ 2¢ 2 2

Table 1. Parameters used in different layers of the architecture,
including dilation parameter v which controls convolution kernel
size, whether use spectral transformer network (SpecTN), the
number of learnable parameters in convolution kernels, the
number of output channels after each convolution operation.

The choice of dilation parameters ~y, number of output
channels after each convolution layer, number of learnable
parameters in each convolution kernel are shown in Table 1.
We choose ¢ = 50 in all of our experiments. As is
mentioned, we only consider the problem of synchronizing
the low-frequency end of different spectral domains, so we
choose to predict a functional map C € R°*45 in all
our experiments, which maps the first 15 eigenbases of
each individual spectral domain into a canonical domain of
dimension 45. Notice the dimension of canonical domain
is larger that each individual domain to allow very different
shapes to be mapped into different subspaces.

C. Partial Shape Part Segmentation

We provide per-category IoU for partial shape part
segmentation experiments in this section, which is not
included in the main paper due to space limit. We compare
our approach with baseline method ACNN [I] and the
results are shown in Table 2

Notice our approach outperforms ACNN on most cat-
egories and the margin between ACNN and ours is large
on average. Our approach is also more robust to data
incompleteness since its performance drop from complete
data segmentation results is less significant than ACNN.

D. Spectral Dilated Kernel Parametrization

We redo the diagnosis experiment about spectral dilated
kernel parametrization, with geometric features as network
input instead of XYZ coordinates of graph vertices. These
geometric features are computed as is in [4]. Similarly we
generate Table 3 in analogy to Table 4 of the main paper.
Compared with Table 4 of the main paper, small kernels
alone deliver better performance. This is because some
multi-scale information is already captured in geometric
features used. Note that our multi-scale kernel construction
still performs the best, partially due to the advantage that
our dilated kernel design achieves a spectral counterpart for
spatial pooling.
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Figure 1. We evaluate the robustness of our model to sampling
density change. Test shapes are downsampled by different ratios
and fed into our network. We compute the segmentation IoU for
different downsample ratios and show it here. With SpecTN, our
framework becomes more robust to sampling density change.

E. Robustness to Sampling Density Variance

In this experiment, we evaluate the robustness of our
approach w.r.t point cloud density variation. To be specific,
we train our SyncSpecCNN for shape segmentation on the
point cloud provided by [4] first. Then we downsample
the point cloud under different downsample ratio and
evaluate our trained model to check how segmentation per-
formance would change. Again we evaluate our approach
with/without SpecTN and the result is shown in Figure 1.

By introducing SpecTN, our framework becomes more
robust to sampling density variation. Our conjecture is that
sampling density variation may result in large spectral space
perturbation, therefore being able to synchronize different
spectral domains becomes especially important.

F. Normal Prediction

Our framework could learn generic graph functions not
limited to part segmentation or keypoint prediction. To vali-
date this point, we leverage our proposed SyncSpecCNN to
learn another type of graph vertex function, vertex normal
function. Specifically, our SyncSpecCNN takes the XYZ
coordinate function of graph vertices as network input and
predicts vertex normal as output. The network is trained
to minimize the L2 loss between ground truth normals
and predicted normals. We use the official train/test split
provided by [2] and visualize some of the normal prediction
results from test set in Figure 2.

It can be seen our predictions are very close to the
ground truth at most of the time.Even on thin structures
the normal predictions are still reasonable. One problem
of our prediction is that it tends to generate smoothly
transiting normals along the boundary while the ground
truth is sharper. This is due to the fact that we are using
a small number of eigenbases in our experiments, which is



mean mean plane bag cap car chair ear- guitar knife lamp laptop motor-mug pistol rocket skate- table

partial  complete phone bike board
ACNN| 69.21 79.63 62.73 63.26 58.90 38.25 70.59 68.68 88.08 74.58 61.49 87.03 31.90 79.92 62.98 35.70 68.41 76.07
Oursl | 76.19 83.48 71.01 77.61 64.78 56.05 78.97 68.50 84.63 82.01 73.02 91.40 40.71 87.34 72.60 42.53 80.61 79.55
Ours2 | 78.02 84.74 74.55 82.58 65.36 58.12 80.41 65.55 84.75 82.53 77.39 93.15 43.12 90.24 74.71 42.17 83.22 80.51

Table 2. IoU for part segmentation on incomplete shapes. Note that for comparison, we not only report mean IoU for partial shape part
segmentation under “mean partial”, but also list mean IoU for complete shape part segmentation under “mean complete”. Ours1 represents
a variation of our framework without SpecTN and Ours2 corresponds to our full pipeline with SpecTN. On average we outperform ACNN,
the baseline approach, by a large margin and we outperforms ACNN on most shape categories. Moreover, our approach is more robust to
data incompleteness since its performance drop is lower in comparison with complete shape segmentation.

small large  multi-scale
Cubic Spline 0.7509 - -
Exp Window 0.7527 0.7551 0.7615
Modulated Exp Window  0.7896  0.7819 0.7965

Table 3. We compare different kernel basis and kernel size choices,
using cross category part segmentation task for evaluation. IoU is
reported in the table. This table is similar to Table 4 of the main
paper, only different in taking geometric features of graph vertices
as input instead of XYZ coordinates alone.
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Figure 2. We evaluate our framework on normal prediction task.
The colors shown on the 3D shape are RGB-coded normals,
namely putting XYZ components of normal directions into RGB
channels. Our framework could predict reasonable normal
directions even on very thin structures.

not friendly to regression tasks with very high frequency
signal as target.
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