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Abstract

The following items are provided in the supplementary
material:
1. A video clip describing the process.
2. Discussions on feedback via hidden state.
3. ‘Feedback’ vs ‘Recurrent Feedforward’.
4. Computational Efficiency Analysis.
5. The Coarse-to-fine representation:

5.1. Timed-tSNE details.
5.2. Activation Maps of Feedback vs Feedforward.

6. Physical vs Virtual Depth.
7. Recurrent module choice: LSTM, GRU, RNN.
8. Stanford Cars dataset experimental details and analysis.
9. MPII dataset experimental details and analysis.

1. Video Clip
We provide a video clip in the supplementary material

describing the pivotal aspects of the paper. To facilitate
understanding the paper, we encourage watching the video
available at https://youtu.be/MY5Uhv38Ttg.

2. Feedback via Hidden State
Feedback model predicts the output at each iteration and

passes it to the next iteration. The common formulation of
feedback is to explicitly feed back the thus-far output as part
of next iteration’s input (fig. 1, a). However, in our model,
we pass this information via the hidden state that carries a
direct notation of output rather than the explicit output; the
output can be computed given the hidden state, using Eq. 4
of the main paper. This approach is illustrated in fig. 1, b,
where fi and fo are learned functions relating the input i and
output o to the hidden state.

Passing the output via a hidden state has two main ad-
vantages: first, as the input (e.g. images) and output (e.g.
classes) belong to difference spaces, it enables developing
generic feedback architectures without needing to design
task-specific output-to-input functions [3]. Second, it brings
further flexibility on the architecture and allows distributing
the passed hidden states across different physical depths. In
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Figure 1. Feedback in observed vs hidden state. (a) The conventional
feedback formulation, where the observed output is fed back in the input.
(b) Feedback via the hidden state. No distribution of hidden state happens
in this configuration (Stack-All architecture). (c) Feedback via the hidden
state, where the hidden states are distributed (Stack-n architecture.)

other words, there does not have to be a single hidden state
relating the input to the output, and instead, there can be
multiple hidden states each curated for a certain physical
depth (i.e. Stack-All vs Stack-n architectures. See Table 2
of the main paper). This is shown in fig. 1, b and c.

However, it is not merely the recurrent structure that cre-
ates the feedback mechanism. In the next section, we show
the conventional recurrent networks are mostly indeed feed-
forward and how our feedback model performs something
rather different.

3. ‘Feedback’ vs ‘Recurrent Feedforward’

As explained in Sec. 3 of the main paper, feedback has
two main requirements: 1) recurrence, and 2) rerouting a
notion of posterior (output) into the system in each itera-
tion. Employing a recurrent method for learning without
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Figure 2. Different ways of connecting the loss to a recurrent net-
work, leading to instantiating a ‘Feedback’ or ‘Recurrent Feedfor-
ward’ model.

fulfilling the second requirement leads to a ‘recurrent feed-
forward’ model [5]. Architecturally, the primary difference
between feedback and recurrent feedforward is how the loss
is connected. Fig. 2-right corresponds to the recurrent feed-
forward architecture where the loss is connected to the last
iteration only. In this setting, the training phase is indeed
a shared-weights feedforward operation when rolled out in
time. As this model is only required to make one final pre-
diction, it has the leisure to form the representation in a
manner similar to feedforward but through the recurrent it-
erations, rather than physical layers. This hypothesis aligns
with the comparison we made between the feedback model
and its counterparts in the main paper’s Sec. 4, especially
Table 4. However, if the loss is connected to each itera-
tion as in our feedback model (Fig. 2-left), the network is
forced to make a prediction at each iteration and the hidden
state will carry the thus-far output per Eq. 4 of the main pa-
per. Therefore, instead of having the leisure to use several
iterations to tackle the task, the network has to tackle the
entire task at every iteration with support from the informa-
tion passed down from the previous iteration, leading to a
proper feedback model.

4. Computational Efficiency
As discussed in the main paper, under proper hardware,

the feedback model has an advantage on speed over feed-
forward. This is because a feedback network is a better fit
for parallelism compared to feedforward due to having a
shallower computation graph.1 In the following paragraphs,
we will discuss the computation graph depth of feedforward
model with depth D and that of feedback model with same
virtual depth (consisting of m temporal iterations and phys-
ical depth n, D = n×m, and Stack-1 configuration).

Feedforward computation has the limitation that repre-
sentation X at depth i is dependent on the previous repre-
sentation at depth i− 1 creating a nested serial process, i.e.

1The number of layers, number of parameters, etc are not proper met-
rics for an algorithm’s run-time.
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Figure 3. Computation graph of Feedback vs Feedforward. Xj
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notes the representation at temporal iteration i and physical depth j. Skip
connections are not shown for simplicity.
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Figure 4. Illustration of computation of feedback’s inference pass.
Each node represents a ConvLSTM module. Skip connections are not
shown for simplicity.

Xi depends on Xi−1. In feedback model, representation
Xj

i at temporal iteration i and physical depth j is depen-
dent on two representations: the previous iteration Xj

i−1

(for stacked ConvLSTM, Hd
t = Xd

t , per Eq. 3 of main pa-
per) and the previous depth Xj−1

i :

Xj
i = F(Xj−1

i ,Xj
i−1).

The resulting computation graphs of feedforward and
feedback are shown in Fig. 3; notice that although both
graphs have the same node count, they have different depths
(longest directed path in a graph): feedforward’s depth
is dff = D = nm while feedback network has depth
dfb = n + m − 1. In a proper hardware scenario where
one can do parallel computations to a sufficient extent, in-
ference time can be well measured by the longest distance
from root to target (same as the graph’s depth). An example
of feedback network’s computation can be seen in Fig. 4.
Notice that for our computation, we have max(n,m) par-
allel computations at each time step. Therefore, the total
prediction time of feedforward network is larger than feed-
back network’s since dff = nm > n+m− 1 = dfb.

The run-time for early iteration’s prediction can also be
measured by the longest distance from root to the output at
kth iteration. For feedback network, the distance dfbk =
n + k − 1, but for feedforward network dffk = nk. We
have dffk = nk > n+ k − 1 = dfbk .

For Stack-i configuration, the computation blocks of
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Figure 5. Timed-tSNE plots showing how the representation evolves
through depth/iterations (i.e. how a datapoint moved in representa-
tion space) for each method, on five random classes of CIFAR100. The
lighter the hue of the arrow, the earlier the depth/iteration. Feedback’s
representation is relatively disentangled throughout, while feedforward’s
representation gets disentangled only towards the end. (Best see on screen.
Vector lengths are shown in half to avoid cluttering.)

feedback is i times more complex the above graph depths
become dfb = (ni +m − 1) × i = n +mi − i, and feed-
forward is still dff = nm. Hence, feedback is still superior
as long as i < n (physical depth).

It is worth noting that the practical run-time of an al-
gorithm depends on various factors, such as implementa-
tion and hardware. The purpose of the above analysis on
computation graph’s depth is to exclude the impact of those
factors and quantify the true capacity of each method. The
above derivation is applicable to training time as well, given
proper hardware.

5. Representation in the Feedback Network

This sections provides a discussion on the representa-
tion developed by the feedback network. We use a vari-
ant of tSNE, timed-tSNE, to inspect how the representation
evolves through the network when viewed from the win-
dow of final classification results. We also compare acti-
vation maps of feedback and feedforward models demon-
strating that the two models develop significantly different
representations, and therefore, different approaches to solv-
ing the problem though their endpoint numerical results are
similar.

5.1. Timed-tSNE

t-Distributed Stochastic Neighbor Embedding (t-SNE)
[6] is a visualization method for embedding high dimen-
sional features in a lower dimensional space. We develop
a variant of this method, called Timed-tSNE, which illus-
trates how the representation of a network evolves through-
out depth/iterations, when viewed through the window of
class labels. Instead of having one embedding location per
datapoint (which is what original tSNE does), we form a
trajectory for each datapoint by connecting a set of embed-
ding locations. The kth embedding location in a trajectory
is the tSNE location of the corresponding datapoint using its
representation at depth k while being intialized at its tSNE

location at depth k−1. For the feedback network, the repre-
sentations come from different iterations (i.e. i embeddings
for a network with i iterations). For feedforward, the repre-
sentations come from difference layers.

Fig. 5 shows the timed-tSNE plot for five random classes
of CIFAR100; an animated version that better demonstrates
the trajectories is included in the video. As apparent in
Fig. 5, feedforward’s trajectories are more intertwined than
feedback’s and only separate different classes at the last it-
erations. In contrast, feedback’s timed-tSNE is more sepa-
rated early on while evolving to targeted fine-grained mar-
gins. This aligns with the hypothesis that feedback network
forms representations in a coarse-to-fine manner. It also
aligns with the hypothesis for feedforward network that it
forms representations in a low abstract to high abstract man-
ner, which causes its earlier layer representations unsuitable
for making final predictions.

5.2. Activations Maps

Fig. 6 provides neuron activations maps in the feed-
back, feedforward, and recurrent feedforward networks (see
Sec. 3 for their distinctions) for a random CIFAR100 query
image. The feedforward model develops the commonly ob-
served edges-based activations in the early layers to sparse
abstract activations in the late layers [8]. On the other hand,
feedback network’s activations show significantly dissim-
ilar patterns suggesting a very different representation had
been internally developed to solve the problem in hand. The
activation of the feedback model appear to have a pattern
consistent with a coarse-to-fine representation, as 1) early
layers seem to have a notion of the object, unlike feed-
forward’s early layers, 2) the activations are updated with
rahter fine-grained changes as opposed to radical updates,
and 3) low-level features, such as edges, are not observed in
any layers. This observation is especially interesting since
the endpoint performance of both feedback and feedfor-
ward models are close, suggesting that the networks took
notably different routes with different properties for solving
the problem, though they landed on the same performance
in terms of endpoint results.

The activations of the recurrent feedforward model ap-
pear to be inbetween the feedforward and feedback mod-
els, suggesting that the weight-sharing mechanism is con-
tributing to making the feedback’s activations different from
feedforward’s (especially in terms of sparsity). However,
it is apparent that recurrent feedforward’s representation is
also quite dissimilar to feedback’s (see the edge-based ac-
tivations in the early layers of recurrent feedforward and
dissimilar and blobby activation patterns in the last layers)
suggesting that the different representation of the feedback
network is not entirely owed to the weight-sharing/recurrent
mechanism, and the feedback is playing a role.
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Figure 6. Activation maps of different layers/iterations of feedback, feedforward, and recurrent feedforward networks for a query image from CIFAR100.
The feedback model develops a representation considerably different from feedforward.

6. Physical vs Virtual Depth (optimal iteration
number and physical depth)

In this section, we will discuss the optimal iteration num-
ber and physical depth for designing a feedback model. We
observe that both iteration and physical depth positively
correlate with performance, but naively adding iterations or
substituting iterations with physical depth is detrimental to
final performance.

6.1. Optimal Iteration Number

Fig. 7 provides the CAIFAR100 performance of two
feedback models with two different physical depths (4 and
8) when trained for different number of iterations. We ob-
serve that for a fixed physical depth, there is a sweet spot
for how many iterations one should train the network for.
Among the iteration numbers that we experimented with,
training for 8 iterations is optimal for physical depth 8 while
training for 4 is optimal for physical depth 12. Another ob-
servation is that having iterations (in other words having
feedback) is always better than not having them (iteration
= 1). This experiment shows having feedback benefits a
model but naively adding more iterations does not neces-
sarily lead to a better final performance.

6.2. Relationship Between Physical Depth and Best
Performance

We also observe that, fixing the total virtual depth, there
is a sweet spot for the combination of physical depth and
iteration number as multiple combinations can lead to the
same virtual depth. Fig. 8 shows, for virtual depth 48, the
optimal combination is physical depth 12 trained for 4 itera-
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Figure 7. Impact of number of training iterations on the endpoint
performance on CIFAR100. For two networks with physical depths 4
and 8, we train for different iteration and compare the results. The results
suggest naively adding iterations does not necessarily lead to improving
performance.

tions. The fact that the (4,12) combination outperforms the
combination with shallower physical depths shows a cer-
tain minimum physical depth is required for a good perfor-
mance. In addition, (4,12) also outperforms combination
with deeper physical depths showing that naively substitut-
ing iteration for deeper physical depth will hurt the final
performance. Therefore, it is not beneficial to naively give
up iteration for physical depth and vice versa, as both ap-
pear to be essential for achieving the best performance.

7. What to use as the feedback module?
As the most common recurrent model, we used LSTM

to instantiate the feedback networks. However, in principle,
any recurrent model can be used for this purpose. We per-
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Figure 8. CIFAR100 performance comparison of feedback models
with same virtual depth but different (Iteration, Physical Depth)
combinations. All models have the virtual depth Iteration×Physical
Depth=48.

formed a set of experiments to better understand this aspect.

7.1. LSTM vs GRU vs Vanilla RNN

We performed an experiment comparing ConvLSTM,
ConvGRU and ConvRNN as the recurrent model adopted
for instantiating feedback networks. LSTM acheives the
best peformance followe by GRU and RNN (Table 1).

Network Type Top1 Top5 Params (M)
ConvRNN 66.67 90.33 0.49
ConvGRU 68.38 91.22 1.10

ConvLSTM 71.11 91.48 1.90
Table 1. Comparison of vanilla RNN, GRU, and LSTM as the
recurrent module of feedback networks, with physical depth =
12, iteration number = 4, virtual depth = 48.

7.2. LSTM Gate Ablation Study

To understnad if/how the various internal mechanisms
of LSTM fit the purpose of feedback based learning, we
performed an ablation study of ConvLSTM gates on our
32 layer virtual depth feedback model. To ablate a gate in
ConvLSTM, we substitute the convolutional structure of the
gate (two layers deep of 3 × 3 convolutional filters) with a
1×1 convolutional layer. Table 2 provides the results show-
ing that by disabling one or two gates of LSTMs, the perfor-
mance drops by only 0.38% and 1.24% respectively while
reducing the number of parameters to nearly three quarters
or half. This suggests, though LSTM is currently the best
recurrent model for instantiating feedback based learning,
it is mostly likely not the optimal fit and future work could
include developing recurrent models specifically designed
for the purpose of feedback networks.

Table 2 also shows among the four gates of ConvLSTM
(input, output, forget and cell), the output gate is the most
important as ablating it results in the largest performance
drop. Also ablating all other gates except output will have
the highest performance among structures that have only

Gate Top1 Params
input forget output cell % (M)
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Table 2. Performances comparison of adopting LSTM as the feed-
back module with different gate configuration.

one gate not ablated.

8. Stanford Cars Benchmark

The Stanford Cars dataset [4] contains 16,185 images
(8,144 training, 8041 testing) of 196 fine classes and 7
coarse classes. The fine class labels describe Make, Model,
Year of the car, e.g., “Tesla Model S Sedan 2012” or “Audi
S5 Coupe 2012.” The coarse class labels (Sedan, SUV,
Coupe, Convertible, Pickup, Hatchback, Wagon) describe
the basic type of the car. All training and testing images are
resized to 96 × 96 during our training and testing phases.
We perform the evaluations using the standard protocol of
the dataset, the fine accuracy is the top1 accuracy for the
196 fine classes, while the coarse accuracy is the top1 accu-
racy for the 7 super classes.

We adopt a shallower network design to fit the smaller
data volume of the dataset. The feedforward baseline model
has the following architecture (naming convention as in
main paper):
→ C(3, 16, 3, 1)→ BR

→ C(16, 32, 3, 2)→ BR→ {C(32, 32, 3, 1)→ BR}5
→ C(32, 64, 3, 2)→ BR→ {C(64, 64, 3, 1)→ BR}5
→ C(64, 128, 3, 2)→ BR→ {C(128, 128, 3, 1)→ BR}5

→ Avg(12, 1)→ FC(128, 196)

For feedback model we have virtual depth 24:
→ C(3, 16, 3, 1)→ BR

→ Iterate(16, 32, 3, 2, 2, 4)

→ Iterate(32, 64, 3, 2, 2, 4)

→ Iterate(64, 128, 3, 1, 2, 4)

→ Avg(12, 1)→ FC(128, 196)

In the next two subsections, we will demonstrates that
the trends observed on CIFAR100 and reported in the main
paper are also observed in the Stanford Cars dataset.
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Figure 9. Evalaution of taxonomoy based prediction for feedback (FB)
and feedforward (FF) networks trained with or without auxiliary lay-
ers. We use only fine loss to train, except for the curriculum learned one.

8.1. Taxonomy based Prediction Results

The resulting taxonomy based prediction performance is
illustrated in Fig. 9. The same phenomenon as in CIFAR100
is observed: feedback network can achieve a good ability of
making taxonomy based prediction even at the first itera-
tion (or in other words, shallower virtual depth), while the
feedforward networks do not achieve the same level of tax-
onomic prediction capacity until the later (deeper) layers.

Note that the F(N) values (Fig. 9 and Fig. 6 of main pa-
per) are meant to be interpreted in conjunction with classifi-
cation accuracy values (Fig. 10 and Fig. 5 of main paper), to
identify the potential cases where an artificially high F(N)
value is achieved only due to a poor fine classification accu-
racy. Since feedback has both best classification accuracy
and F(N) value, this is not the case in this experiment. As
an additional test to reconfirm this, the following are F(N)
values on a common hard set where none of the methods
worked for fine classification on CIFAR100: 32%, 34%,
30%, 32% for feedback vs 21%, 24%, 27%, 32% for best
feedforward (comparable to Fig. 5 of main paper).

8.2. Early Prediction Results

We demonstrate the early prediction advantage of the
feedback network on the Stanford Cars dataset as well. We
conduct a study at virtual depth 24 (similar results achieved
with other depths) between the feedback and feedforward
networks with various designs. As shown in Fig. 10, at the
same virtual depth of 6, 12, and 18, the feedback network
already achieves satisfactory and increasing accuracies. The
feedforward baselines are designed in the same fashion as
in main paper’s early prediction section.

9. MPII Human Pose Estimation Dataset
We further study the effect of feedback on a regression

task, MPII Human Pose Estimation [1]. We conduct this
study on Hourglass [7], which is a feedforward structure
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Figure 11. Structural comparison between one stack feedforward
hourglass (a) and one stack feedback hourglass (b). ↑ denotes upscaling
the resolution, and ↓ denotes downsizing the resolution. Both structures
combine different scale of features

significantly different from widely used feedforward mod-
els such as VGG or ResNet. This shows that feedback is not
only applicable to conventional feedforward structures, but
also more complex ones.

MPII Human Pose Estimation dataset [1] consists of 40k
samples (28k training, 11k testing). Since the test annota-
tions are not provided, we train on a subset of training im-
ages while evaluating on a held-out validation set of 3000
samples. We perform the evaluations using the standard
protocol of the dataset by calculating PCKh value. PCKh
(Percentage of Correct Keypoints-head) metric measures
the percentage of detections that fall within a normalized
distance (head size) of the ground truth.

We design our feedback model based on one-stack Hour-
glass [7]. As shown in Fig. 11, we replace ResNet bottle
neck units (olive colored blocks) with ConvLSTM (green
blocks). Each ConvLSTM unit has physical depth of 1 with
iteration number equal to the number of ResNet blocks it
substitutes. We also perform the same up (↑) and down (↓)
sampling as hourglass. We only do up-and-down sampling
twice (Hourglass does so four times), as even with fewer



Method Head Shoulder Elbow Wrist Hip Knee Ankle PCKh
Carreira et al. IEF [3] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3

Belagiannis&Zisserman, recurrent [2] 97.2 92.6 84.6 78.4 83.7 75.7 70.0 83.9
Ours 97.6 92.9 86.3 81.0 84.9 75.8 70.0 85.0

Table 3. Performance comparison of different feedback models on MPII human pose estimation.
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feedforward

Iteration 2 Iteration 3 ground truth

Step 1 Step 2 Step 3

Ours

IEF
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Figure 12. Qualitative results on MPII human pose estimation.
From the left to right and top to bottom, our proposed method
with three iterations and the ground truth as well as IEF with three
steps and feedforward network results.

up-and-down sampling the feedback model outperforms the
Hourglass baseline.

In Table 3, we compare our model with other feedback
based methods [3, 2]. IEF [3] represents the conventional
way of applying feedback (via observed state), while our
model represents the feedback concept discussed in Sec.2.
Qualitative results of our method along with IEF [3] and one
stack feedforward hourglass are provided in Fig. 12.
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