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1. Dataset Analysis

1.1. Semantic Segmentation

Our synthetic dataset contains on average 11.48 objects
per image, and 54.90% of the pixels are covered by objects,
i.e. not wall, floor, or ceiling. On the contrary, NYUv2 con-
tains 24.20 objects per image, and 68.17% of the pixels are
covered by objects. Fewer number of instance and object-
covered pixels suggests that the real scene is more cluttered
containing more objects, and probably our synthetic camera
should move closer to the objects to have a zoomed in view.

1.2. Distribution of Surface Normal

Figure 1 shows the distribution of surface normal for all
pixels in our synthetic data (the LEFT column) and NYUv2
(the RIGHT column) respectively. The normal distribution
is visualized in a panorama, with x axis corresponding to
angle in horizontal plane from [� �, �], and y axis corre-
sponding to the vertical angle from [� �/2, �/2]. The nor-
mal is calculated in camera coordinates, where z- is gravity
direction, x+ points to the right-hand side, and y+ points
to the front of the camera. We also show the distribution
of normal direction on foreground (pixels belong to an ob-
ject) and background (belong to wall, floor, or ceiling) area
respectively on the 2nd and 3rd row. We can see that the
overall and foreground distribution of synthetic data is sim-
ilar to that of the NYUv2 dataset. However, the background
distribution is different, because the vertical tilted angle is
fixed such that the normal direction of floor or ceiling are
all the same (two highlighted single dots) and the normal of
wall falls in a great circle on the panorama.

� indicates equal contributions.
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Figure 1. Surface normal distribution of our synthetic dataset
and NYUv2. The normal distribution is visualized in a panorama,
with x axis corresponding to [��, �], and y axis corresponding
to [��/2, �/2]. The normal is calculated in camera coordinates,
where z- is gravity direction, x+ points to right-hand side, and y+
points to the front of the camera. There are two single dots on
the background distribution of our synthetic data highlighted for
visualization purpose.

2. Additional Results

2.1. Normal Prediction

2.1.1 Quantitative Analysis

Figure 2 shows the angle error for pixels within each sub-
region of the images, i.e. error along x and y axis of the
camera coordinates mentioned above. The image dimen-
sion (640 × 480) is divided into 6 × 6 sub-regions. The
number on each sub-region shows the mean of angle error,
and darker intensity indicates lower error. “NYUv2” is the
model directly trained on NYUv2. “MLT” is model pre-
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Figure 2. Surface normal estimation error of different sub-area in
image. The image dimension (640 × 480) is divided into 6 × 6 sub-
regions. The number on each sub-region shows the mean of angle
error, and darker intensity indicates lower error. “NYUv2” is the
model directly trained on NYUv2. “MLT” is model pretrained on
our synthetic data. “MLT+NYUv2” is the “MLT” model further
finetuned on NYUv2.

trained on our synthetic data. “MLT+NYUv2” is the “MLT”
model further finetuned on NYUv2. It is clear to see that
all of the models works better in the mid-lower part of the
image, which is mostly occupied by floor or top of the fur-
niture, e.g. table, bed, that shows upward normal direction.
The area near left and right boundary of the image shows
comparatively worse performance.

Figure 3 shows the angle error with regard to the depth
of the pixel, i.e. error along the z axis of the camera coor-
dinates. As we can see, the error is the smallest for pixels
with depth in range of [2, 3], and keeps increasing when the
points are further away from the camera. This indicates that
pixels far away from camera shows less evidence of local
geometry in color image. On the other hand, as the noise
of depth is proportional to depth for most of the depth sen-
sor, the noise in the ground truth may also contribute to the
error.

Table 1 shows the performance of different models on
pixels from different semantic area. We can see that the
error on the foreground area which consists of objects is
significantly larger than the error on the background area
covered by wall, ceiling, and floor. It is consistent with
the observation that foreground area containing various of
objects exhibits more diverse and rapidly changing surface
normal, which is hard to predict. However, the error on the
background area is still comparatively big, which is a bit of
surprising as the area mostly consists of large plane surfaces
that are easy to deal with. We hypothesize that the noise in
the ground truth contributes to the error of both foreground
and background area, which is more visible to the later one.

2.1.2 Additional Visual Results

We provide more results of surface normal estimation in
Figure 4 and Figure 5. The 1st and 2nd column show input
images and ground truth normal converted from the depth
image. The 3rd to 5th column show the results of the model
directly trained on NYUv2, pretrained on MLT-IL/OL ren-
dering, and finetuned on NYUv2 after pretraining.
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Figure 3. Surface normal estimation error w.r.t. depth. The
number in the legend shows the average of overall error for each
method respectively. The dashed line indicates these values in the
figure. The performance is better if the curves and numbers are
lower.

Model Area Mean ( � ) �Median ( � ) � 11.25�22.5� 30�

NYUv2
F 29.26 23.48 22.54 48.14 61.03
B 24.95 18.27 32.81 57.98 69.15

MLT
F 29.37 23.78 22.38 47.67 60.08
B 26.76 19.28 31.33 55.75 66.33

MLT F 24.17 17.29 33.42 60.48 71.50
+NYUv2 B 19.54 12.15 47.01 71.75 79.74

Table 1. Surface normal estimation error for fore/background
area. For each model, we provide the performance for pixels on
either objects (“F”) or background (“B”), i.e. wall, floor, or ceil-
ing.

2.2. Semantic Segmentation

Table 2 shows the per-class semantic segmentation re-
sults. Table 3 shows the object mapping from our synthetic
dataset 84 category to NYUv2 40 category. Figure 6 shows
additional visual results from semantic segmentation task.

2.3. Boundary Edge Prediction

Figure 7 shows additional visual results of the boundary
detection. First column is the input color images, second to
fourth columns are the results of the model, after initialized
with weights learned from ImageNet, (2) directly trained on
NYUv2, (3) pretrained on MLT-IL/OL rendering, and (4)
pretrained on MLT-IL/OL rendering followed by finetun-
ing on NYUv2. The last column is the ground truth overlaid
with the difference between the model w/wo pretraining on
our MLT-IL/OL. Red pixels denote enhanced, and green
pixels denote suppressed edges as object boundary by the
model with pretraining. We can see that edges within ob-
jects or on the background are successfully suppressed.



Testing Image NYUv2 MLT MLT+NYUv2Ground Truth Error Map

Figure 4. Visualization of surface normal estimation on NYUv2 testing images. The 1st and 2nd column show input images and ground
truth normal converted from the depth image. The 3rd to 5th column show the results of the model directly trained on NYUv2, pretrained
on MLT-IL/OL rendering, and finetuned on NYUv2 after pretraining.



Testing Image NYUv2 MLT MLT+NYUv2Ground Truth Error Map

Figure 5. Visualization of surface normal estimation on NYUv2 testing images. The 1st and 2nd column show input images and ground
truth normal converted from the depth image. The 3rd to 5th column show the results of the model directly trained on NYUv2, pretrained
on MLT-IL/OL rendering, and finetuned on NYUv2 after pretraining.
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Figure 6. Visualization of semantic segmentation result on NYUv2 testing images.



Testing Image MLT MLT+NYUv2NYUv2 Gnd & Diff

Figure 7. Visualization of object boundary detection on NYUv2 testing images. First column is the input color images, second to fourth
columns are the results of the model, after initialized with weights learned from ImageNet, (2) directly trained on NYUv2, (3) pretrained
on MLT-IL/OL rendering, and (4) pretrained on MLT-IL/OL rendering followed by finetuning on NYUv2. The last column is the ground
truth overlaid with the difference between the model w/wo pretraining on our MLT-IL/OL. Red pixels denote enhanced, and green pixels
denote suppressed edges as object boundary by the model with pretraining.



wall floor cabinet bed chair sofa table door window bookshelf picture counter blinds desk shelves curtain dresser pillow mirror floor mat
ImageNet+NYU 65.7 71.1 48.4 53.4 43.6 46.0 31.6 25.2 38.7 36.8 44.8 40.7 46.1 14.5 7.4 33.2 26.1 28.7 11.0 24.2
ImageNet+MLT 51.1 47.9 4.1 23.4 23.2 19.6 14.1 9.0 11.1 0.0 7.0 8.8 32.2 5.2 2.3 14.6 3.4 0.0 0.0 11.8

ImageNet+MLT+NYU 67.1 72.5 46.9 53.8 45.5 45.3 32.2 26.5 40.2 32.7 46.9 41.6 51.9 14.8 7.0 37.0 31.3 30.1 14.9 28.7
ImageNet+OPNGL 25.6 13.3 2.0 16.0 6.9 10.4 3.4 0.4 0.0 0.0 3.3 3.4 1.0 0.0 0.5 7.8 0.0 0.0 0.0 6.0

ImageNet+OPNGL+NYU 66.6 72.8 48.2 52.7 43.7 46.3 31.5 22.5 37.4 35.1 47.2 42.4 44.6 14.7 6.8 31.4 35.6 31.0 17.0 25.4
clothes ceiling books refridgerator television paper towel shower curtain box whiteboard person night stand toilet sink lamp bathtub bag otherstructure otherfurniture otherprop mean

15.5 46.7 25.9 30.7 36.0 21.1 21.7 8.6 6.8 27.5 50.2 21.9 56.2 39.9 29.1 33.0 6.5 17.1 9.1 29.4 31.7
0.0 10.9 0.0 2.5 5.7 0.0 0.0 0.0 0.0 0.0 12.2 6.1 8.1 7.1 14.4 15.3 0.0 1.0 0.0 11.3 9.6
19.9 47.3 25.7 31.7 37.4 23.4 23.5 10.8 5.7 36.1 54.8 28.3 53.1 39.5 32.8 29.9 8.8 16.9 8.8 28.4 33.2
0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 3.5 0.0 1.9 8.0 7.3 3.6 0.0 0.5 0.0 0.6 3.2
18.2 46.4 24.2 32.2 37.7 21.2 23.3 6.9 6.0 40.1 51.4 24.9 55.4 42.7 29.4 35.4 10.5 16.6 8.9 28.9 32.8

Table 2. Semantic segmentation performance for NYUv2 40 categories. For each semantic category, we show the IOU accuracy of models
w/wo pretraining on synthetic data with different rendering qualities.

Color Image Depth Image Converted Normal Valid Map

Figure 8. Example of surface normal ground truth. The surface
normal is converted from depth map, which might be noisy due
to the limit of sensor technology. The valid map indicates if the
normal on each pixel is reliable. Only valid pixels are used for
training and testing.

3. Ground Truth for Surface Normals

For the results presented in the paper, we use the ground
truth provided by Eigen et al. [2] on their project webpage.
The ground truth is computed at each pixel by fitting a least
squares plane, using the code released by Silberman et al.
[3]. Given a pixel location, they first sample 3D points from
18 × 18 nearby region, and form them into a matrix of
A = N × 3. The normal for the pixel is then computed
as the eigenvector of ATA corresponding to the smallest
eigenvalue. The confidence of this estimated normal is de-
fined as 1 � �1/sigma2, where �1 is the smallest, and �2
is the second smallest eigenvalue of ATA. At training time,
we only compute loss on valid pixels, such that invalid pix-
els always have a zero loss and hence do not propagate any
gradient back. At test time, only the valid pixels are evalu-
ated.

The “ground truth” normals computed in this way are
quite noisy, due to noise in the depth sensor. To evaluate
the effect of this noise, and to provide results with respect
to normals estimated more robustly, we fit planes to each
of the area labelled as either wall, ceiling, and floor, and
replace the surface normal of these area with the normal
of the fit plane. Figure 9 shows an example of the ground
truth before and after plane fitting. As an additional ex-
periment beyond the ones described in the paper, we eval-
uate MLT+NYUv2, NYUv2, and MLT models presented
in the paper on this new ground truth. We find that they
achieve mean angle errors of 23.12, 28.18, and 28.28, re-
spectively, compared to the 22.06, 27.30, and 28.59 on the
original ground truth. We can see that only MLT, the model
pretrained on synthetic data, achieves comparatively better
performance. Table 4 shows the evaluation of each model

Original GT Plane Fitting GT

Figure 9. Surface normal ground truth before and after plane fit-
ting for wall, ceiling, and floor.

on background area on the original and plane fitting ground
truth. Again, the MLT model shows the most improvement,
and performs even better than the model directly trained on
NYUv2. This indicates that the model pretrained on syn-
thetic predicts cleaner and more accurate background ge-
ometries than ones trained on the noisy ground truth.

4. Object Boundary Detection Network

We adopt network proposed in Xie et al. [4]. The net-
work is a trimmed VGG-16, where only first 5 convolution
layers are used. An intermediate output layer is added to
each convolution stage before pooling, which results in 5
intermediate outputs with stride 1, 2, 4, 8, and 16 respec-
tively. Their final output is the fusion of these 5 intermedi-
ate outputs.

We use their code, to replicate their results. The VGG-
16 layers are initialized with the pretrained model on Im-
ageNet. In their original setting for training on BSDS500
[1], the learning rate is initially set as 1 × 10 � 6 and reduced
to 10% after each 10K iterations. The momentum is 0.9,
and the weight decay is 2 × 10� 4.

However, this training prescription does not apply to
NYUv2. The loss goes out of range and training fails, be-
cause the NYUv2 provides larger images with more pixels
and the loss accumulates significantly more error from all
pixels. To deal with this problem, when training on NYUv2,
we reduce the initial learning rate to 2 × 10� 7. Empirically,
this learning rate keeps the total loss in range, and is large
enough to finetune the model.

http://cs.nyu.edu/~deigen/dnl/normals_gt.tgz
https://github.com/s9xie/hed


Ousrs 84 class NYUv2 Ousrs NYUv2
ac otherprop kitchenware otherprop
arch door mailbox otherprop
armchair chair mirror mirror
baby bed bed music otherprop
bar otherfurnitureoffice chairs chair
bathroom stuff otherprop ottoman otherprop
bathtub bathtub outdoor lamp lamp
bench chair chair outdoor rest chair
bookshelf bookshelf outdoor spring otherprop
bunker bed bed paintings picture
candel lamp partitions otherstructure
car otherprop people people
chair chair pets otherprop
chandelier lamp pillow otherprop
clock otherprop plants otherprop
closets
wardrobes cabinets cabinet pool otherprop

cloth clothes recreation otherprop
coffee table table rug floormat
column wall safe otherprop
computer television shelves shelves
curtain curtain shoes otherprop
desk desk shoes cabinet cabinet
dinning table table shower shower curtain
door door single bed bed
double bed bed sofa sofa
dresser dresser stair otherstructure
dressing table table stand night stand
fan otherprop switch otherprop
fences gate otherprop table and chair table
figurines otherprop table lamp lamp
fireplaces otherstructure toilet toilet
floor lamps lamp toys otherprop
fridges refridgerator trash can otherfurniture
gym otherprop tripole otherprop
hangers otherprop tv bench cabinet
hanging
kitchen cabinet cabinet tvs television

heater otherprop vases otherprop
household applianceotherprop wall lamp lamp
idk otherprop wash basins sink
kitchen appliance otherprop whitebroad whiteboard
kitchen cabinet cabinet windows window
kitchen set otherprop workplace desk

Table 3. Class mapping from our synthetic dataset 84 category to
NYUv2 40 category.
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