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1. Introduction
This material provides additional information regarding

our publication. In particular, we provide in-depth details
about the parametric generative model we used to generate
our procedural videos, an extended version of the proba-
bilistic graphical model (whereas the graph shown in the
publication had to be simplified due to size considerations),
expanded generation statistics, details about additional data
modalities we include in our dataset, and results for our
Cool-TSN model for the separate RGB and flow streams.

2. Generation details
In this section, we provide more details about the inter-

pretable parametric generative model used in our procedural
generation of videos, presenting an extended version of the
probabilistic graphical model given in our section 3.5.

2.1. Variables

We start by defining the main random variables used in
our generative model. Here we focus only on critical vari-
ables that are fundamental in understanding the orchestra-
tion of the different parts of our generation, whereas all part-
specific variables are shown in Section 2.2. The categorical
variables that drive most of the procedural generation are:

H : h ∈ {model1,model2, . . . ,model20}
A : a ∈ {“clap”, . . . , “bump into each other”}
B : b ∈ {motion1,motion2, . . . ,motion953}
V : v ∈ {“none”, “random perturbation”,

“weakening”, “objects”, “blending”}
C : c ∈ {“kite”, “indoors”, “closeup”, “static”}
E : e ∈ {“urban”, “stadium”, “middle”,

“green”, “house”, “lake”}
D : d ∈ {“dawn”, “day”, “dusk”}
W : w ∈ {“clear”, “overcast”, “rain, “fog”}

(1)

where H is the human model to be used by the protagonist,
A is the action category to be generated, B is the base mo-
tion sequence used for the action, V is the variation to be
applied to the base motion, C is the camera behavior, E is
the environment of the virtual world where the action will
take place, D is the day phase, W is the weather condition.

These categorical variables are in turn controlled by a
group of parameters that can be adjusted in order to drive
the sample generation. These parameters include the θA
parameters of a categorical distribution on action categories
A, the θW for weather conditions W , θD for day phases D,
θH for model models H , θV for variation types V , and θC
for camera behaviors C.

Additional parameters include the conditional probabil-
ity tables of the dependent variables: a matrix of parameters
θAE where each row contains the parameters for categori-
cal distributions on environments E for each action cate-
gory A, the matrix of parameters θAC on camera behaviors
C for each action A, the matrix of parameters θEC on cam-
era behaviors C for each environment E, and the matrix of
parameters θAB on motions B for each action A.

Finally, other relevant parameters include Tmin, Tmax,
and Tmod, the minimum, maximum and most likely dura-
tions for the generated video. We denote the set of all pa-
rameters in our model by θ.

2.2. Model

The complete interpretable parametric probabilistic
model used by our generation process, given our generation
parameters θ, can be written as:

P (H,A,L,B, V, C,E,D,W | θ) =
P1(D,W | θ) P2(H | θ)
P3(A,L,B, V,C,E,W | θ)

(2)

where P1, P2 and P3 are defined by the probabilistic graph-
ical models represented on Figure 1, 2 and 3, respectively.
We use extended plate notation [1] to indicate repeating
variables, marking parameters (non-variables) using filled
rectangles.
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Figure 1: Probabilistic graphical model for P1(D,W | θ),
the first part of our parametric generator (world time and
weather).

Figure 2: Probabilistic graphical model for P2(H | θ), the
second part of our parametric generator (human models).

2.3. Distributions

The generation process makes use of four main families
of distributions: categorical, uniform, Bernoulli and trian-
gular. We adopt the following three-parameter formulation
for the triangular distribution:

Tr(x | a, b, c) =



0 for x < a,
2(x−a)

(b−a)(c−a) for a ≤ x < c,

2
b−a for x = c,

2(b−x)
(b−a)(b−c) for c < x ≤ b,

0 for b < x.

(3)

All distributions are implemented using the open-source
Accord.NET Framework1. While we have used mostly uni-
form distributions to create the dataset used in our exper-
iments, we have the possibility to bias the generation to-
wards values that are closer to real-world dataset statistics.
Day phase. As real-world action recognition datasets are
more likely to contain video recordings captured during
daylight, we fixed the parameter θD such that

P (D = dawn | θD) = 1/3

P (D = day | θD) = 1/3

P (D = dusk | θD) = 1/3

P (D = night | θD) = 0.

(4)

We note that although our system can also generate night
samples, we do not include them in PHAV at this moment.
Weather. In order to support a wide range of applications
of our dataset, we fixed the parameter θW such that

P (W = clear | θW ) = 1/4

P (W = overcast | θW ) = 1/4

P (W = rain | θW ) = 1/4

P (W = fog | θW ) = 1/4,

(5)

ensuring all weather conditions are present.
Camera. In addition to the Kite camera, we also included
specialized cameras that can be enabled only for certain en-
vironments (Indoors), and certain actions (Close-Up). We
fixed the parameter θC such that

P (C = kite | θC) = 1/3

P (C = closeup | θC) = 1/3

P (C = indoors | θC) = 1/3.

(6)

However, we have also fixed θCE and θAC such that the
Indoors camera is only available for the house environ-
ment, and that the Close-Up camera can also be used for
the BrushHair action in addition to Kite.
Environment, human model and variations. We fixed the
parameters θE , θH , and θV using equal weights, such that
the variables E, H , and V can have uniform distributions.
Base motions. All base motions are weighted according to
the minimum video length parameter Tmin, where motions
whose duration is less than Tmin are assigned weight zero,
and others are set to uniform, such that

P (B = b|Tmin) ∝

{
1 if length(b) ≥ Tmin

0 otherwise
(7)

We then perform the selection of a motion B given a cate-
gory A by introducing a list of regular expressions associ-
ated with each of the action categories. We then compute

1http://accord-framework.net

http://accord-framework.net


Figure 3: Probabilistic graphical model for P3(A,L,B, V,C,E,W | θ), the third part of our parametric generator (scene
and action preparation).

matches between the textual description of the motion in its
source (e.g., short text descriptions in [2]) and these expres-
sions, such that

(θAB)ab =

{
1 if match(regexa, descb)
0 otherwise

∀a ∈ A,∀b ∈ B.

(8)
We then use θAB such that

P (B = b | A = a, θAB) ∝ (θAB)a,b. (9)

Weather elements. The selected weather W affects world
parameters such as the sun brightness, ambient luminosity,
and multiple boolean variables that control different aspects
of the world (cf. Figure 1). The activation of one of these
boolean variables (e.g., fog visibility) can influence the ac-
tivation of others (e.g., clouds) according to Bernoulli dis-
tributions (p = 0.5).
World clock time. The world time is controlled depending
on D. In order to avoid generating a large number of sam-
ples in the borders between two periods of the day, where
the distinction between both phases is blurry, we use differ-
ent triangular distributions associated with each phase, giv-
ing a larger probability to hours of interest (sunset, dawn,
noon) and smaller probabilities to hours at the transitions.

We therefore define the distribution of the world clock times
P (T ) as:

P (T = t | D) ∝
∑
d∈D

P (T = t | D = d) (10)

where

P (T = t | D =dawn ) = Tr(t | 7h, 10h, 9h )

P (T = t | D =day ) = Tr(t | 10h, 16h, 13h )

P (T = t | D =dusk ) = Tr(t | 17h, 20h, 18h ).
(11)

Generated video duration. The selection of the clip dura-
tion L given the selected motion b is performed considering
the motion length Lb, the maximum video length Tmin and
the desired mode Tmod:

P (L = l | B = b) = Tr(a = Tmin,

b = min(Lb, Tmax),

c = min(Tmod, Lb))

(12)

Actors placement and environment. Each environment E
has at most two associated waypoint graphs. One graph
refers to possible positions for the protagonist, while an
additional second graph gives possible positions BWG for
spawning background actors. Indoor scenes (cf. Figure 4)



Figure 4: Example of indoor and outdoors scenes.

do not include background actor graphs. After an environ-
ment has been selected, a waypoint PW is randomly se-
lected from the graph using an uniform distribution. The
protagonist position Pxyz is then set according to the posi-
tion of PW . The Sxyz position of each supporting character,
if any, is set depending on Pxyz . The position and destina-
tions for the background actors are set depending on BWG.

Camera placement and parameters. After a camera has
been selected, its position Cxyz and the position Txyz of the
target are set depending on the position Pxyz of the protag-
onist. The camera parameters are randomly sampled using
uniform distributions on sensible ranges according to the
observed behavior in Unity. The most relevant secondary
variables for the camera are shown in Figure 3. They in-
clude Unity-specific parameters for the camera-target (CTs,
CTm) and target-protagonist springs (TPs, CTm) that can
be used to control their strength and a minimum distance
tolerance zone in which the spring has no effect (remains at
rest). In our generator, the minimum distance is set to either
0, 1 or 2 meters with uniform probabilities. This setting is
responsible for a ”delay” effect that allows the protagonist
to not be always in the center of camera focus (and thus
avoiding creating such bias in the data).

Action variations. After a variation mode has been se-
lected, the generator needs to select a subset of the ragdoll
muscles (cf. Figure 5) to be perturbed (random perturba-
tions) or to be replaced with movement from a different
motion (action blending). These muscles are selected using
a uniform distribution on muscles that have been marked
as non-critical depending on the previously selected action
category A. When using weakening, a subset of muscles
will be chosen to be weakened with varying parameters in-
dependent of the action category. When using objects, the
choice of objects to be used and how they have to be used
is also dependent on the action category.

Figure 5: Ragdoll configuration with 15 muscles.

Object placement. Interaction with objects can happen
in two forms: dynamic or static. When using objects dy-
namically, an object of the needed type (e.g., bow, ball) is
spawned around (or is attached to) the protagonist at a pre-
determined position, and is manipulated using 3D joints,
inverse kinematics, or both. When using static (fixed) ob-
jects, the protagonist is moved to the vicinity of an object
already present in the virtual world (e.g., bench, stairs).



Figure 6: Plot of the number of videos generated for each
category in the version of our PHAV dataset used in the
publication.

2.4. Statistics

In this section we show statistics about the version of
PHAV that has been used in experimental section of our
paper. A summary of the key statistics for the generated
dataset can be seen in Table 1. Figure 6 shows the number
of videos generated after each action category in PHAV. As
it can be seen, the number is higher than 1,000 samples for
all categories.

Figure 7: Plot of the number of videos per parameter value.

Figure 7 shows the number of videos generated by
value of each main random generation variable. The his-
tograms reflect the probability values presented in Sec-
tion 2.3. While our parametric model is flexible enough to
generate a wide range of world variations, we have focused
on generating videos that would be more similar to those in
the target datasets.



Statistic Value

Clips 39,982
Total dataset frames 5,996,286
Total dataset duration 2d07h31m
Average video duration 4.99s
Average number of frames 149.97
Frames per second 30
Video dimensions 340x256
Average clips per category 1,142.3
Image modalities (streams) 6

Table 1: Statistics of the generated dataset instance.

2.5. Data modalities

Although not discussed in the paper, our generator can
also output multiple data modalities for a single video,
which we include in our public release of PHAV. Those
data modalities are rendered roughly at the same time using
Multiple Render Targets (MRT), resulting in a superlinear
speedup as the number of simultaneous output data modal-
ities grow. The modalities in our public release include:
Rendered RGB Frames. Those are the RGB frames that
constitute the action video. They are rendered at 340x256
resolution and 30 FPS such that they can be directly feed to
Two-Stream style networks. Those frames have been post-
processed with 2x Supersampling Anti-Aliasing (SSAA),
motion blur, bloom, ambient occlusion, screen space reflec-
tion, color grading, and vignette.
Semantic Segmentation. Those are the per-pixel semantic
segmentation ground-truths containing the object class label
annotations for every pixel in the RGB frame. They are
encoded as sequences of 24-bpp PNG files with the same
resolution as the RGB frames. We provide 63 pixel classes,
including the same 14 classes used in Virtual KITTI [3],
classes specific for indoor scenarios, classes for dynamic
objects used in every action, and 27 classes depicting body
joints and limbs.
Instance Segmentation. Those are the per-pixel instance
segmentation ground-truths containing the person identifier
encoded as different colors in a sequence of frames. They
are encoded in exactly the same way as the semantic seg-
mentation ground-truth explained above.
Depth Map. Those are depth map ground-truths for each
frame. They are represented as a sequence of 16-bit
grayscale PNG images with a fixed far plane of 655.35 me-
ters. This encoding ensures that a pixel intensity of 1 can
correspond to a 1cm distance from the camera plane.
Optical Flow. Those are the ground-truth (forward) opti-
cal flow fields computed from the current frame to the next
frame. We provide separate sequences of frames for the hor-
izontal and vertical directions of optical flow represented as
sequences of 16-bpp JPEG images with the same resolution
as the RGB frames.

Figure 8: Example frames and data modalities for a syn-
thetic action (car hit, left) and MOCAP-based action (sit,
right). From top to bottom: Rendered RGB Frames, Se-
mantic Segmentation, Instance Segmentation, Depth Map,
Horizontal Optical Flow, and Vertical Optical Flow. Depth
image brightness has been adjusted in this figure to ensure
visibility on paper.



Fraction UCF101 UCF101+PHAV HMDB51 HMDB51+PHAV

1% 25.9 27.7 8.1 12.7
5% 68.5 71.5 30.7 37.3

10% 80.9 84.4 44.2 49.7
25% 89.0 90.4 54.8 60.7
50% 92.5 92.7 62.9 65.8
100% 92.8 93.3 67.8 70.1

Table 2: TSN and Cool-TSN (+PHAV) with different frac-
tions of real-world training data (split 1).

Raw RGB Frames. Those are the raw RGB frames before
any of the post-processing effects mentioned above are ap-
plied. This modality is mostly included for completeness,
and has not been used in experiments shown in the paper.
Pose, location and additional information. Although not
an image modality, our generator can also produce textual
annotations for every frame. Annotations include camera
parameters, 3D and 2D bounding boxes, joint locations in
screen coordinates (pose), and muscle information (includ-
ing muscular strength, body limits and other physical-based
annotations) for every person in a frame.

3. Experiments

In this section, we show more details about the experi-
ments shown in the experimental section of our paper.

Table 2 shows the impact of training our Cool-TSN
models using only a fraction of the real world data (Fig-
ure 7 of original publication) in a tabular format. As it
can be seen, mixing real-world and virtual-world data from
PHAVis helpful in almost all cases.

Figure 9 shows the performance of each network stream
separately. The second image on the row shows the per-
formance on the Spatial (RGB) stream. The last image on
the row shows the performance for the Temporal (optical
flow) stream. One can see how the optical flow stream is the
biggest responsible for the good performance of our Cool-
TSN, including when using very low fractions of the real
data. This confirms that our generator is indeed producing
plausible motions that are being helpful to learn both the
virtual and real-world data sources.

4. Video

We have included a video (cf. Figure 10) as additional
supplementary material to our submission. The video shows
random subsamples for a subset of the action categories in
PHAV. Each subsample is divided into 5 main variation cat-
egories. Each video is marked with a label indicating the
variation being used, using the legend shown in Figure 11.

Figure 9: TSN and Cool-TSN results for different amounts
of training data for combination and separate streams.



5. Conclusion
Our detailed graphical model shows how a complex

video generation can be driven through few, simple param-
eters. We have also shown that generating action videos
while still taking the effect of physics into account is a chal-
lenging task. Nevertheless, we have demonstrated that our
approach is feasible through experimental evidence on two
real-world datasets, disclosing further information about the
performance of each RGB and optical flow channels in this
supplementary material.



Figure 10: Sample frame from the supplementary video available at http://adas.cvc.uab.es/phav/.

Figure 11: Legend for the variations shown in the video.

http://adas.cvc.uab.es/phav/
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