
EgoTracker: Pedestrian Tracking with Re-identification in Egocentric Videos

Jyoti Nigam, Renu M. Rameshan

Indian Institute of Technology, Mandi

Mandi, HP-175001

jyoti nigam@students.iitmandi.ac.in,renumr@iitmandi.ac.in

Abstract

We propose and analyze a novel framework for track-

ing a pedestrian in egocentric videos, which is needed for

analyzing social gatherings recorded with a wearable cam-

era. The constant camera and pedestrian movement makes

this a challenging problem. The main challenges are natu-

ral head movement of wearer and target loss and reappear-

ance in a later frame, due to frequent changes in field of

view. By using the optical flow information specific to ego-

centric videos and also by modifying the learning process

and sampling region of trackers which tracks by learning

an SVM online, we show that re-identification is possible.

The specific trackers chosen are STRUCK and MEEM.

1. Introduction

Use of wearable cameras is on the rise among civilians as

well as law-enforcement personnel. These videos are cap-

tured from the first person view point. Examples of wear-

able devices are GoPro camera and GoogleGlass which can

be worn on head or shoulder. The first person viewpoint

provides a hands-free mode for recording indoor [5] as well

as outdoor activities and allows capturing of wearer’s social

interactions as well as interactions of others. Here social

interactions refer to any activity performed by one or more

individuals, such as people forming a group, standing to-

gether, moving alone etc. In this paper we specifically focus

on videos of social gathering captured by wearable cameras.

The automatic analysis of egocentric videos captured

from a first person perspective provides several insights

about group as well as individual behavior. As the first step

towards this analysis one needs to detect and identify ac-

tivities at individual and group levels in a video. The pat-

terns of pedestrian (agent) movements play an important

role in predicting the type of group activities. To model

and compute these patterns, tracking of pedestrian targets

with re-identification is required. Re-identification is im-

portant owing to wearer as well as target motion which re-

sults in frequent target loss and re-entry. In order to track

an agent throughout the length of the video, the tracker

should be able to identify the agent once re-entry occurs

after target loss. Though the problem of re-identification

looks trivial when there is only one pedestrian in the scene,

it may be noted that a simple pedestrian detection method

will not solve the tracking problem due to the following

reasons. The performance of the tracker depends on the

performance of the detector. Typical scenarios for this are

(1) mis-detection, (2) false detection and (3) multiple detec-

tions. Our proposed algorithm identifies the re-entry of the

person who is being tracked.

Though egocentric vision has the advantage of camera

being close to individuals while capturing social interac-

tions [4], it poses new challenges like (1) the camera is un-

der constant motion and this unstructured camera motion

leads to shaky and unstabilized videos, (2) due to closeness

of target, even small rotation of camera can make the tar-

get leave the field of view, or change the appearance, (3)

camera and target, both are in motion, which increases the

frequency of target loss and re-entry. In addition to these,

challenges like variation in illumination, viewing angle and

scale get amplified here owing to the close proximity of

camera and target. Note that most of these challenges do

not pose a problem in a stationary camera capturing a social

gathering.

In literature, we could not find a general framework for

tracking of pedestrians with re-identification in egocentric

videos. The works which are closest to the problem ad-

dressed here are by Choi et al. [3] and Alletto et al. [2].

Choi et al. [3] uses a stereo camera setup and tracks multi-

ple people using depth information from stereo, whereas we

are looking for a single camera solution for tracking with

re-identification. In [2], Alletto et al. proposes a novel ap-

proach based on odometry and 3D localization which is im-

plemented on a wearable board. Although this work over-

comes many issues typical to egocentric vision, it requires

additional hardware whereas our algorithm does not have

any such requirements.

Recently, several papers have used deep learning ap-

proaches to tackle the problem of person re-identification.

40

In [1], deep convolution architecture has been proposed that

takes a pair of input images and outputs the similarity score.

The network has been designed to learn features and corre-

sponding similarity metric simultaneously. In [9], a recur-

rent supervised CNN has been proposed for tracking by de-

tection that takes into account of previous locations along

discriminative deep learned features.

It has been observed that the tracking algorithms de-

signed for conventional videos [13] failed when used in first

person perspective videos. As an example, Lukas-Kanade

[8] failed, because the assumptions of brightness constancy,

temporal persistence and spatial coherence fail due to dis-

continuity between successive frames. This discontinuity

occurs due to rapid changes in the field of view of camera.

State-of-the-art methods like KCF [7], MEEM [14]

and STRUCK [6] were also found to fail in tracking/re-

identification. KCF [7] fails since it confuses between hu-

man and any upright structure in an image, as shown in

Fig. 1. Both MEEM [14] and STRUCK [6] exploit an on-

line SVM for tracking fail in re-identification because of

the learning procedure. STRUCK and MEEM have an un-

derlying similarity, hence it is possible to modify both for

re-identification.

(a) (b)

Figure 1. Comparison of KCF and STRUCK. (a) The target is

tracked by STRUCK in the presence of fast camera motion,

whereas in (b) the bounding box has moved away from target on

to the tree in case of KCF.

Both STRUCK and MEEM treat the tracking problem as

a classification task and use online learning techniques to

update the object model. Both the algorithms use the same

sampling process and maintain a set of positive and nega-

tive support vectors which is shown in Fig. 2(a). Both the

sets are updated in every frame. This non-discriminative

updation leads to change in target model in the event of

target loss. This can be seen in Fig. 2(b). The new tar-

get model contains support vectors corresponding to back-

ground, since both algorithms pick that patch which has the

highest classification accuracy. It may be noted that this

whole process leads to an initial fall in score value, which

rises with subsequent frames and reaches a new high as the

model changes. This can be inferred from Fig. 2(c).

The above described update procedure leads to a devia-

tion of the target model from the ground truth model. By

the time target re-enters, if the model drift is large, the tar-

get cannot be re-identified. By a simple modification to the

algorithm using optical flow information specific to egocen-

tric case and by using classification score values, we ob-

serve that our method is able to outperform state-of-the-art

trackers on various egocentric videos.

2. Proposed System

We propose a scale invariant tracker for egocentric

videos which is capable of doing target re-identification

and is faster than the baseline trackers, STRUCK and

MEEM. Since STRUCK and MEEM have similar structure

for learning the SVMs we use them as the baseline track-

ers. Re-identification is done by controlling the learner us-

ing classification score values. The scale invariant tracking

is achieved by exploiting the optical flow values. A faster

tracking is developed by redefining the sampling region.

2.1. Reidentification

A target can be re-identified while tracking, by modi-

fying the update process of the learner. The classification

score value is used to decide whether the target is present or

absent in the next frame. STRUCK as well as MEEM uses a

classification score (ρ) to update the support vectors. This is

defined as follows. Let P be the set of positive support vec-

tors, S be the set of sampled patches and θ, the threshold.

The classification score is defined as

ρ = similarity(s, p), where s ∈ (S) and p ∈ (P) (1)

The score going below a particular threshold indicates

the absence of the target. At this point the learner is stopped,

which also pauses the support vector update mechanism

preventing irrelevant change in the target model. This is

demonstrated in Fig. 2(e). At the re-entry of target the score

goes above this threshold because the set of positive support

vectors corresponds to the target. Hence, the target gets re-

identified at re-entry to the field of view, which is shown

in Fig. 2(f). At this point the update procedure restarts the

learner.

Status of learner =

{

Continues (target is present) ρ > θ

Stops (target is absent) else

(2)

The results shown in Fig. 2 correspond to the baseline

tracker STRUCK, similar results are achieved for MEEM

as well which are not shown here because a visual represen-

tation of support vectors is not available for MEEM. Steps

9−10 of Algorithm 1 take care of re-identification. In addi-

tion to this, the modifications in sampling process generate

less number of support vectors which also aids in the re-

identification task. This is explained in Section 3.3.

41

(a) Initial target and set of support vectors (b) Target lost : Learning introduces background

in target model

(c) Re-identification is failed

(d) Initial target and set of support vectors (e) Target lost : Learning is stopped, no update

in target model

(f) Target is re-identified

Figure 2. Upper row: shows the working of STRUCK, lower row: shows the working of EgoTracker

(a) Positive support vectors before target lost (b) STRUCK : Positive support vectors at the

end

(c) EgoTracker : Positive support vectors at

the end

Figure 3. Comparison of STRUCK and EgoTracker with respect to positive support vectors. (a) Green boxes show positive support vectors

and Red boxes show negative support vectors (best viewed in color). (b) Limitation of STRUCK in the case of target loss: less positive

support vectors corresponding to target and background is considered as changed target (shown by crosses on green boxes). (c) After

modifying the update rule, in EgoTracker the set of positive support vectors contains only target features in the case of target loss.

The effect of this modification on the support vectors is

shown in Fig. 3. Fig. 3(a) shows the set of support vec-

tors before target is lost and it may be observed that the

positive support vectors correspond to the target. Fig. 3(b)

shows the same set from STRUCK in the absence of target

for 85 frames. All those marked by a cross indicate back-

ground elements and show the change in model. Fig. 3(c)

shows the same set for EgoTracker in the absence of target

for the same 85 frames. It is observed that EgoTracker pre-

serves the model, whereas STRUCK completely redefines

the model, leading to failure in re-identification in STRUCK

as shown in Fig. 2(c).

2.2. Scale invariance

As mentioned in Section 1, scale variations are more

prominent in egocentric videos compared to conventional

videos. To ensure continuation of tracking in the presence

of scale variations, we use the optical flow values. The

change in target size in image plane can be identified by

using ratio of optical flow values obtained from two con-

secutive pairs of frames. Scale changes of more than 50%
are not tracked.

To identify target motion towards or away from the cam-

era we use optical flow, if optical flow increases it shows

that the target is moving towards the camera and vice-versa.

Note that optical flow is calculated only within the bound-

ing box. The optical flow values from two consecutive pairs

of frames (ft, ft−1) and (ft−1, ft−2), where ft is frame at

time t, are used.

To give a simplified demonstration of the idea, we give

an analysis considering movement along Z direction away

from camera. There is no movement along X,Y and no ro-

tation. Under these assumptions, the horizontal and vertical

components (ut, vt) at time t of optical flow can be written

as :

Let (X,Y, Z)T be the 3D point with positive Z direction

away from camera. The origin is same as camera center.

(VX , VY , VZ)
T be the velocity vector in 3D and f , the focal

length of camera. We use u to denote horizontal component

of optical flow and v to denote vertical component.

u =
f

Z
VX −

x

Z
VZ (3)

Since, there is no motion along X and Y axes, the veloc-

42

ity component along X axis, VX is 0 and from projection

equation x is fX
Z

. So now u can be written as:

u = −
x

Z
VZ (4)

Using ut−1 for horizontal velocity for the frame pair

(ft−1, ft−2)

ut−1 = −
x

Z
VZ (5)

Assuming that the object is moving with constant velocity

VZ , ut becomes

ut = −
x

Z + δZ
VZ (6)

where δZ is the distance moved between ft and ft−1. Sim-

ilarly the vertical component of optical flow becomes

vt−1 = −
y

Z
VZ , vt = −

y

Z + δZ
VZ (7)

The ratios of horizontal and vertical components (oh, ov)
of optical flow are

oh =
ut

ut−1
=

1

1 +
δZ

Z

, (8)

ov =
vt

vt−1
=

1

1 +
δZ

Z

. (9)

Assuming that δZ < Z, oh and ov can be approximated

as

oh ≅ 1−
δZ

Z
, ov ≅ 1−

δZ

Z
. (10)

Hence, oh and ov are both less than one for a target moving

away from camera. The values oh and ov are indicators to

the movement of subject away or towards the camera. From

(8) and (9) it is observed that for a subject moving away

oh < 1, ov < 1.

In the actual scenario there is motion along X and Y

also. Table 1 gives possible oh and ov values for different

types of movements in X,Y without considering rotation.

An entry of 1 indicates as increase in the value of the cor-

responding optical flow and 0 indicates no change. Case 1

need not to be considered in a tracking problem. In Case 2

and Case 3 there is no scale change, so bounding box size

need not to be changed. Case 3 is shown in Fig. 4 where

subject is moving in X direction alone and it can be noted

that there is no change in the size of subject. In Case 4

since both are changing, the bounding box size needs to be

changed. We look at the ratio γ = oh
ov

. If γ ∈ [0.2, 1.5],
which is attained empirically, we change the bounding box

size by an amount determined by average value of ut which

is denoted by ut
avg along X direction and average value of

vt which is denoted by vtavg along Y direction. This proce-

dure is explained in steps 3− 8 of Algorithm 1.

Table 1. Horizontal and vertical components of optical flow

(oh, ov) to show relative movement between subject and camera
Case oh ov Relative motion

1
0 0 NIL

2 0 1 only in Y direction

3 1 0 only in X direction

4 1 1 in both directions

Figure 4. Motion of target along X axis alone

2.3. Proposed sampling

Egocentric videos give additional information about rel-

ative wearer-target motion in the form of optical flow. It

may be noted that over a period of time the wearer’s field of

view reaches back to the previous place in the case where

the wearer is walking with natural head movements (left

and right). In contrast to conventional videos, this left and

right movement of camera exhibits a particular pattern in

the optical flow. We leverage this information for deciding

the location of bounding box in subsequent frames, i.e. the

sampling process is modified and the sampling region (S)
in pixels is defined as follows:

S = {(x, y) | − 5 ≤ y ≤ 5, l ≤ x ≤ h} (11)

It may be observed that while capturing egocentric

videos, the wearer can move his/her head more often in

horizontal direction rather than vertical direction. Hence,

the vertical movement of bounding box is restricted to ± 5

pixels throughout the tracking process. When the target is

lost, learning stops but search continues with l and h. The

limits for l and h are decided using the average value of hor-

izontal component of optical flow (ut
avg). Here the sparse

optical flow [12] for entire frame is used. The sampling

procedure proceeds in this manner and similarity measure

is computed for each candidate sample to predict the target

presence/absence. The l and h values in (11) are fixed as

l = −r, h = 0 ut
avg > 0 (12)

l = 0, h = r ut
avg < 0 (13)

Here the assumption is that the target moved out of the

frame from right. The limits are reversed for the opposite

event.

This modification reduces the search space of target and

generates less number of support vectors which in turn re-

duces the time required for calculating the similarity. It may

be noted that the choice of (S), aids in re-identification

43

Figure 5. Block diagram of baseline trackers

Figure 6. Block diagram of EgoTracker

which is discussed in Section 3.1. The detailed pictorial

representation of baseline trackers and EgoTracker is shown

in Fig. 5 and Fig. 6, where for better visualization we show

the sampling region for the case where target is present. In

implementation search space reduction happens when target

is absent. The above procedure is explained in steps 9− 18
of Algorithm 1.

3. Experimental Analysis

In this section, we give details for the implementation of

our proposed approach. We use the publicly available C++

code of STRUCK [6] and MATLAB code of MEEM [14]

with the proposed changes in order to apply it for pedes-

trian tracking in egocentric videos. These egocentric videos

are taken from HUJI dataset [11], [10] and are limited to

short segments containing 300 to 900 frames. Apart from

this dataset, we have generated our own data using GOPRO

Black action camera, with eight different videos to test the

addressed problems. The sample frames from the captured

videos are shown in Fig. 7. We have named the videos Exp1

to Exp8 corresponding to the wearer/subject movement sce-

narios as given in Table 2.

In this work, we are dealing with videos containing a

single pedestrian with possible scale variations and to ex-

tend our experimentation, we track a single pedestrian in

the presence of multiple pedestrians. In the case of mul-

tiple pedestrians, at the target loss the target model will

not be updated even in the presence of other pedestrians.

This discriminative updating rule enables our algorithm to

Algorithm 1 EgoTracker

Require:

(i). Sequence of raw images, ft is frame at time t.

(ii). BB is bounding box at ft.

(iii). OF is optical flow of ft and ft−1 containing (ut, vt), ut
avg BB

and vt
avg BB

are average optical flow values within bounding box.

(iv). bestscore is the classification score of best candidate.

(v). ut
avg is average optical flow value of entire frame.

(vi). r is the search radius.

Ensure:

Tracking of a pedestrian, and maintaining the track in the event of

target loss and re-entry along with limited amount of scale variations.

1: Given ft, ft−1, BB in ft−1 and threshold θ, estimate BB in ft;

2: Start baseline tracker STRUCK with vertical search radius ±5 pixels;

3: Compute OF within BB of ft, ft−1 and ft−1, ft−2.

4: if (ut

ut−1
< 1 & vt

vt−1
< 1) then

5: Reduce the size of BB by average values of ut
avg BB

and vt
avg BB

6: else

7: Increase the size of BB by average values of ut
avg BB

and vt
avg BB

8: end if

9: if (bestscore < θ) then

10: Stop learner and compute block wise OF between ft−1, ft;

11: if (ut
avg > 0) then

12: Restrict the sampler to −r to 0 pixels horizontally;

13: Continued until (bestscore > θ);
14: else if (ut

avg < 0) then

15: Restrict the sampler to 0 to r pixels horizontally;

16: Continued until (bestscore > θ);
17: end if

18: end if

re-identify the target, it can be seen in Fig. 8.

The case of missed detection may occur due to partial

occlusion or any heavy distortion in the target and in this

44

Figure 7. Images from the generated dataset (a) [Top row]Exp1, (b)[middle row] Exp2 and (c)[bottom row] Exp6

Table 2. Dataset generated to address specific problems
Video Name Wearer/Subject Motion Addressed Problem

Exp1 Both wearer and subject are stationary and wearer is moving head left to right and reverse Re-identification

Exp2 Only wearer is moving towards stationary subject with head rotation left to right and reverse Re-identification

Exp3 Only subject is moving towards stationary wearer and wearer is moving head left to right and reverse Re-identification

Exp4 Both wearer and subject are moving towards each other on straight path and wearer is moving head left to right and reverse Re-identification

Exp5 Both wearer and subject are moving towards each other on a zig zag path and wearer is moving head left to right and reverse Re-identification

Exp6 Only subject is moving towards stationary wearer Scale variation

Exp7 Only subject is moving away from stationary wearer Scale variation

Exp8 Only subject is moving but not towards stationary wearer, its movement is along horizontal direction only Scale variation

(a) Frame - 70 (b) Frame - 100 (c) Frame - 150

Figure 8. Upper row: shows the working of STRUCK, lower row: shows the working of EgoTracker. To present a generalized version of

our proposed method, we track a single pedestrian in the presence of one more pedestrian (video segment is taken from Huji dataset [11]).

(a) Set of positive support vectors before target loss. (b) Shows update in target model at the time of target loss, in EgoTracker it is not

updating while in STRUCK it is continuously updating. (c) As the target re-enters the field of view, it is identified and tracked again in the

case of EgoTracker and re-identification is failed in the case of STRUCK.

case the classification score will go below the threshold.

This reduction in score value pauses the support vectors up-

date mechanism thereby preventing patches from occluded

or heavily distorted target from being included in the set of

positive support vectors. Thus, the target model will only

contain relevant support vectors. The running time is es-

timated on a laptop of configuration - 8 GB RAM, quad

core intel i5 processor and 2.20 GHz speed. The perfor-

mance metrics used for analysis of the proposed system are

re-identification, scale invariance, computation time along

with score analysis.

3.1. Performance Analysis

In this section we evaluate the performance of Ego-

Tracker for twelve different video segments.

To assess tracking performance, we use the Pascal VOC

overlap criterion [6]. Fig. 9 shows precision plots for four

videos. These plots show the percentage of frames for

which the overlap between the ground truth and tracker

bounding boxes is greater than a particular threshold. We

can see from these plots that the precision curves for Ego-

Tracker are better than others in almost all the cases.

Fig. 10(a) gives a comparison between the score values

45

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap Threshold

P
re

c
is

io
n

EgoTracker

STRUCK

MEEM

KCF

(a) Exp1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap Threshold

P
re

c
is

io
n

EgoTracker

STRUCK

MEEM

KCF

(b) Exp2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap Threshold

P
re

c
is

io
n

EgoTracker

STRUCK

MEEM

KCF

(c) Yair3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap Threshold

P
re

c
is

io
n

EgoTracker

STRUCK

MEEM

KCF

(d) Exp3

Figure 9. Comparative precision plots for EgoTracker, MEEM, KCF and STRUCK. These plots show the percentage of frames for which

the overlap between the ground truth bounding box and tracker bounding box is greater than a particular threshold.

of STRUCK and EgoTracker. For STRUCK the score falls

at target loss and reaches a new high corresponding to a

wrong target identified by the new positive support vec-

tors. With the proposed modification this does not happen

in EgoTracker. Hence, once the score falls due to loss of tar-

get, it remains low until the target is recaptured after which

the scores remain high as long as the target is present.

Table 3. Comparative Analysis of STRUCK and EgoTracker

Videos Time taken Support Vectors Re-identification

Ego

Tracker

STRUCK Ego

Tracker

STRUCK Ego

Tracker

STRUCK

Exp-1 59s 114s 34 45 Yes No

Exp-2 62s 122s 37 48 Yes No

Exp-3 65s 125s 44 52 Yes No

Exp-4 69s 128s 41 50 No No

Exp-5 52s 110s 43 51 No No

Yair-1 39s 68s 35 43 Yes No

Yair-3 26s 45s 30 38 Yes No

Huji-1 29s 48s 31 40 Yes No

Huji-2 30s 68s 30 40 No No

Human7 43s 90s 43 46 Yes No

Fig. 10(b) shows the comparison between the time taken

for STRUCK and EgoTracker. The time taken for Ego-

Tracker includes time needed for optical flow computation.

It is observed from the plot that the time required for re-

positioning is much smaller for EgoTracker even with opti-

cal flow computation.

Table 3 gives additional results comparing EgoTracker

and STRUCK in terms of time taken, number of support

vectors and re-identification. It is observed that EgoTracker

performs better compared to STRUCK in all the cases.

There are three cases in which the proposed tracker fails, as

in these cases the target re-enters the field of view with high

scale change. Due to this heavy variation in scale, the ex-

tracted features are quite different from the existing support

vectors in the target model, which results in low similarity

score.

4. Conclusion

We present a fast tracker which re-identifies a pedestrian

while tracking in egocentric videos in the presence of scale

variations. Our work is motivated by the fact that in ego-

centric setting, the optical flow arising from head movement

has a well defined pattern. The proposed tracker performs

scale invariant tracking with re-identification in almost all

the cases. Also the computation time is reduced by half as

compared to STRUCK.

46

0 20 40 60 80 100 120
−0.5

0

0.5

1

1.5

2

Number of frames

S
co

re

EgoTracker

STRUCK

EgoTracker re−identifies
target

and starts tracking

Wrong target tracked
by STRUCK

Target lost Target
re−enters

(a) Comparative scores

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of frames

T
im

e

EgoTracker
STRUCK

(b) Comparative timing

Figure 10. Comparative analysis of STRUCK and EgoTracker over

Yair3 dataset.

References

[1] E. Ahmed, M. Jones, and T. K. Marks. An improved deep

learning architecture for person re-identification. In The

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2015.

[2] S. Alletto, G. Serra, and R. Cucchiara. Egocentric object

tracking: an odometry-based solution. In International Con-

ference on Image Analysis and Processing, pages 687–696.

Springer, 2015.

[3] W. Choi, C. Pantofaru, and S. Savarese. A general framework

for tracking multiple people from a moving camera. IEEE

transactions on pattern analysis and machine intelligence,

35(7):1577–1591, 2013.

[4] A. Fathi, J. K. Hodgins, and J. M. Rehg. Social interactions:

A first-person perspective. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1226–1233.

IEEE, 2012.

[5] M. Funk, R. Boldt, B. Pfleging, M. Pfeiffer, N. Henze, and

A. Schmidt. Representing indoor location of objects on

wearable computers with head-mounted displays. In Pro-

ceedings of the 5th Augmented Human International Confer-

ence, page 18. ACM, 2014.

[6] A. S. Hare, Sam and P. H. Torr. Struck: Structured out-

put tracking with kernels. IEEE International Conference

on Computer Vision (ICCV), 2011.

[7] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

37(3):583–596, March 2015.

[8] B. D. Lucas and T. Kanade. An iterative image registra-

tion technique with an application to stereo vision. In Inter-

national Joint Conference on Artificial Intelligence (IJCAI),

pages 674–679, 1981.

[9] G. Ning, Z. Zhang, C. Huang, Z. He, X. Ren, and H. Wang.

Spatially supervised recurrent convolutional neural networks

for visual object tracking. CoRR, abs/1607.05781, 2016.

[10] Y. Poleg, C. Arora, and S. Peleg. Temporal segmentation of

egocentric videos. In IEEE conference on Computer Vision

and Pattern Recognition (CVPR), 2014.

[11] Y. Poleg, A. Ephrat, S. Peleg, and C. Arora. Compact cnn

for indexing egocentric videos. In IEEE Winter Conference

on Applications of Computer Vision (WACV), 2016.

[12] J. Shi and C. Tomasi. Good features to track. In IEEE confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 593–600, Jun 1994.

[13] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,

A. Dehghan, and M. Shah. Visual tracking: An experimental

survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(7):1442–1468, July 2014.

[14] J. Zhang, S. Ma, and S. Sclaroff. MEEM: robust tracking via

multiple experts using entropy minimization. In Proc. of the

European Conference on Computer Vision (ECCV), 2014.

47

