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Abstract

This paper proposes a novel method to estimate the

global scale of a 3D reconstructed model within a Kalman

filtering-based monocular SLAM algorithm. Our Bayesian

framework integrates height priors over the detected objects

belonging to a set of broad predefined classes, based on re-

cent advances in fast generic object detection. Each obser-

vation is produced on single frames, so that we do not need

a data association process along video frames. This is be-

cause we associate the height priors with the image region

sizes at image places where map features projections fall

within the object detection regions. We present very promis-

ing results of this approach obtained on several experiments

with different object classes.

1. Introduction

Live monocular Simultaneous Localization and Map-

ping (SLAM) is a classical problem in computer vision,

with many proposed solutions throughout the last decade [2,

8]. It has numerous applications, from augmented reality

to map building in robotics. However, when performing a

3D reconstruction with a calibrated, monocular system, it

is well known that the output reconstruction is an estimate

of the real structure up to an unknown scale factor. This

may be a problem when the considered application involves

measuring distances, inserting real-size virtual objects with

a coherent scale, etc. Of course, in some specific contexts

(in mobile robotics, for example), the unknown scale fac-

tor can be recovered easily by integrating information from

other sensors [12, 11], from some assumptions on the envi-

ronment or on the position of the camera [16], or from the

introduction of known objects in the scene [5, 14].

Nevertheless, one can note that this intrinsic limit of

monocular systems does not prevent animal visual systems

to have a rather precise depth perception, even with one

sensor only, and in very general situations. This percep-

Figure 1. Our approach combines the YOLO object detection al-

gorithm running simultaneously with the MonoSLAM algorithm.

The global map scale can be inferred from 3D map features whose

projection (dots) are inside one of the object region (rectangles) by

incorporating the object height prior for that object class.

tion of depth based only on monocular cues is rather well

documented [18]. In computer vision, the idea of infer-

ring depth from monocular cues has been exploited in pre-

vious works relating monocular perception of texture and

depth through machine learning techniques [15], and it has

been used to initialize the unknown global scale in monoc-

ular SLAM systems [10]. In this work, the motivation is

to follow this line of research from a different, much less

explored perspective. We use region-based, semantic in-

formation instead of pixel-based information, and rely on

the notion of familiar size monocular cues, well studied in

psychology [18]. To achieve this goal, as illustrated in Fig-

ure 1, we take advantage of the recent availability of very

efficient techniques to detect instances of classes of objects

(“bottle”, “mug”, “book”, etc.), made possible by the ad-
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vent of deep learning techniques, and use an out-of-the-box

generic object detector to extract observations from images

of the video sequence. By associating size priors to these

object classes, we are finally able to infer the global scale of

a monocular SLAM system, within a Bayesian framework.

To the best of our knowledge, this is the first work that

couples tightly the detected instances of an object class de-

tector with a probabilistic monocular SLAM system to per-

form live global scale estimation based on semantic infor-

mation given by the detector, on a single frame basis, and in

a Bayesian scheme. We did not develop the detector by our-

selves, but relied on recent proposals from the deep learning

community. In essence, our approach is limited to detec-

tions from classes that the detector has learned.

The structure of this document is the following. In

Section 2 we review related work on scale estimation for

monocular SLAM. In Section 3 we give an overview of

our estimation method, and in Section 4 we present the

likelihood model to integrate the object detection observa-

tions in the scale estimation framework. Section 5 gives

an overview of the implementation, and in Section 6 we

present the experimental results and evaluations of these re-

sults with respect to simpler forms of estimating the un-

known global scale. Finally, we summarize our work and

discuss potential improvements in Section 7.

2. Related Work

Monocular algorithms are widely used for 3D scene re-

construction and camera tracking. The reason for this is

that they are cost-effective (only an inexpensive camera is

required) and current methods are robust. There are mainly

two approaches for doing this: optimization-based meth-

ods such as PTAM [8] and filtering-based methods such as

MonoSLAM [2]. We have considered here the filtering-

based approach, MonoSLAM, as it is of our interest to in-

corporate in our method the uncertainty associated with 3D

feature locations.

In monocular 3D reconstruction, the scale of the map

is inherently unknown. Methods such as MonoSLAM and

PTAM use a special initialization procedure of the system

to set up the scale of the map. MonoSLAM uses a known

object for system initialization and for fixing the scale of

the map, which introduces the inconvenience of needing a

specific object each time it is executed. PTAM assumes an

initial known translation, which does not give a very pre-

cise scale initialization. Both of these methods also have in

common the problem of scale drift due to inaccuracies in

3D reconstruction and tracking.

Two main techniques have been used for automatic scale

estimation during 3D reconstruction. The first technique

consists of using sensors that intrinsically obtain measure-

ments that allow scale to be estimated, such as depth of fea-

tures using Kinect [11] or translation measurements using

IMU sensors [12]. However, as they incorporate additional

sensors, these techniques defeat one of the main advantages

of monocular algorithms which is the possibility of relying

only on an inexpensive RGB camera. The second family of

techniques consists of using known “natural” objects to es-

timate the scale of the map. The disadvantage of these tech-

niques is the need to train an object recognition algorithm

for specific objects and to have these objects introduced in

the scenes in which the 3D reconstruction algorithm will be

run.

In [14], real-time 3D object recognition is used in a live

dense reconstruction method based on depth cameras, to

get 3D maps with a high level of compression and com-

plementary interactions between the recognitions, mapping

and tracking processes. A major difference with our sys-

tem is that it considers a database of fixed, specific objects,

whereas our aim is to handle fixed categories of objects.

The use of semantics through objects in the SLAM con-

text is also present in works similar to ours, as [5], where an

object recognition system, driven by a bag-of-words algo-

rithm, is integrated within an object-aware SLAM system to

impose constraints on the optimization. Again, a database

of pre-defined specific objects is used, while our approach

relies on much broader object categories.

An alternative approach has been developed with the

idea of using more generic objects, namely faces, using the

front cellphone camera [9]. This method requires a spe-

cial routine to be done during the 3D reconstruction by the

back cellphone camera, in which 6DoF face tracking with

the front facing camera with known scale is used to obtain

the scale for the 3D reconstruction. This method does not

generalize easily to other object classes as it depends on the

precise 6DoF tracking algorithms for faces.

In [4], the most similar work to this one, a generic de-

tector is also used, in the context of urban scenes, and pri-

ors on the sizes of the detected objects. However, a first

difference to our work is that the reconstruction is done in

a bundle adjustment framework and, above all, no connec-

tion is done between the reconstructed map and the detected

object, so that the scale inference is done by using data as-

sociation through consecutive frames, which is done prior

to running the method. Our method does not require data

association, as map features and detection regions are as-

sociated naturally on single frames. The Bayesian frame-

work of our method also has the advantage that it is easy to

incorporate additional uncertainties other than 3D feature

locations, such as the uncertainty in the fit of the object’s

bounding box.

Our approach aims to be ubiquitous for 3D reconstruc-

tion. It avoids the use of external sensors and it is robust, as

it is based on a probabilistic framework. It uses a generic

object recognition algorithm which runs in real time. Deep

neural networks have achieved good accuracy for generic
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object recognition [7], and recently methods that run in real

time have been developed [13]. By combining probabilistic

height priors for recognized generic objects with 3D recon-

struction uncertainties within a Bayesian framework, we are

able to estimate the scale for monocular SLAM.

3. Overview of our approach

A monocular SLAM, such as MonoSLAM [2], allows

to reconstruct a scene as a sparse cloud of 3D points N =
{pi}1≤i≤N , where

pi = (xi, yi, zi)
T . (1)

It also allows to track the configuration of the camera

along time xv,k, where k is an index corresponding to

time/camera frame and xv is a representation of the 3D con-

figuration of the camera, i.e., an element of the Special Eu-

clidean group, SE(3). The vision algorithms reconstruct

the scene up to an unknown scale factor, this means that the

true 3D points qi are related to pi through

qi = dpi + ν, (2)

where d is a global scale factor for the whole scene, a priori

unknown, and ν is the reconstruction error noise. Our aim

is to estimate d using Bayesian inference, based on object

detections given by a generic object detector.

We take the approach proposed in [1] to separate the state

vector (3D coordinates of the map points and camera pose)

into: (i) a dimensionless part that can be maintained based

on the perspective projections equations as in [2] and, (ii)

a recursive estimation scheme that maintains an estimate of

the global scale d as explained hereafter.

Then, our idea is to use those 3D points reconstructed by

the SLAM algorithm that project into an “object” region. In

some way, the data association between the objects and the

current reconstruction is done implicitly at these points. Let

Dk be the number of objects detected by the detector, and

Dk = {Sl}1≤l≤Dk
be the set of Dk detected object zones

(bottles/chairs/screens...). Each Sl encodes a detection per-

formed in the image by the detector, and is associated to a

rectangular window in the video frame k, containing a de-

tected object, and a class cl for the detected object.

We handle a subset of 3D points Tk ⊂ N , a subset of

Tk points reconstructed up to time k, characterized by the

fact that their projection lies within an “object” region as

specified by the detector at time k. Let pi ∈ Tk be one of

these points. We will note at time k:

• πk
i the 2D projection of pi on image k.

• Hl the function that associates one “object” region to

its real height, which we do not know in general, but

for which we will have an associated prior.

• cl the function that associates one “object” region to

the index of the object class to which it belongs.

We are given a prior distribution on the possible heights

for each object class c, i.e., a distribution, pc(H), that we

build beforehand. For the moment, this distribution is set ar-

bitrarily (see the Experimental Results section) but we plan

to learn it by using large categories databases.

Now, what we want to estimate is, at time k, the posterior

probability for the coefficient d, i.e., the distribution condi-

tioned on the cloud reconstructed up to time k and the differ-

ent detection-observations gathered: p(d|N ,D1, . . . ,Dk).
For the sake of clarity, we will suppose that Dk = 1, so

that there is only one object, with its detection S1, and with
its associated height prior p(H1). Then, by using Bayes
rule, we can write the global scale posterior into

p(d|N ,D1
, . . . ,Dk)

∝ p(Dk|d,N ,D1
, . . . ,Dk−1)p(d|N ,D1

,D2
, . . . ,Dk−1)

∝ p(S1|d,N ,D1
, . . . ,Dk−1)p(d|N ,D1

,D2
, . . . ,Dk−1)

∝ p(d|N ,D1
, . . . ,Dk−1)∫

H1

p(H1, S1|d,N ,D1
, . . . ,Dk−1)dH1

∝ p(d|N ,D1
, . . . ,Dk−1)

∫
H1

p(S1|H1, d,N ,D1
, . . . ,Dk−1)

p(H1|d,N ,D1
, . . . ,Dk−1)dH1

∝ p(d|N ,D1
, . . . ,Dk−1)

∫
H1

p(S1|H1, d,N )pc1(H1)dH1.

(3)

This means that at each step we can update the posterior

on d by multiplying it by
∫
H1

p(S1|H1, d,N )pc1(H1)dH1.

We approximate this term with the help of a histogram rep-

resentation over H1, {pc1(H1,m)}, and the prior probabil-

ity that a detection of object 1, of some specific class, has a

real height H1,m (where the heights have been discretized):∑
m p(S1|H1,m, d,N )pc1(H1,m).
In the more general case of Dk > 1, and by assuming

conditional independence between the different detections

observed in frame k, one can show that a similar develop-

ment leads to

p(d|N ,D1, . . . ,Dk)

= p(d|N ,D1, . . . ,Dk−1)

Dk∏
l=1

∫
Hl

p(Sl|Hl, d,N )pcl(Hl)dHl.

(4)

The likelihood term p(Sl|Hl,m, d,N ) is the probability

that the detected object has the dimensions in pixels with

which it was detected, given that the object has some real

size Hl,m, that the scale is d, and that the cloud is N . Its

calculation is explained in the next section.
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Figure 2. Points of intersection, πt and πd, of λ with the boundary

of the object detection.

The evaluations over d are done for a discrete set of val-

ues, di, within some specified interval [dmin, dmax], to ease

the computational burden.

4. Likelihood of the observations

We will now describe the calculation of the likelihood

term p(Sl|Hl,m, d,N ), which is the probability that the de-

tected object has the dimensions in pixels with which it was

detected, given that the object has some real size Hl,m, that

the scale is d, and that the 3D cloud is N . The general idea

for doing this is back projecting the object extremities found

in the image into the 3D map and estimating the object’s

height using a feature in N that projects into the object and

the scale d. The height estimate is then compared with Hl,m

to obtain p(Sl|Hl,m, d,N ).

Let us assume that in the world frame, i.e., the frame in

which the 3D points are reconstructed by MonoSLAM, we

know the vertical direction, that is, the direction perpendic-

ular to the ground plane. This vertical direction is set when

initializing the MonoSLAM system with a square marker

which is perpendicular to the ground plane. Let also RW
k

be the 3D location of the camera at time k in the world

frame W . The vectors and points we will be dealing with

hereafter will be expressed in the camera frame.

To evaluate p(Sl|Hl, d,N ), let us consider a 3D point

pi from the reconstructed cloud N , such that its current

projection πk
i ∈ Sk

l . Let λ be the line in the image such

that it contains πk
i and such that the plane obtained by back

projecting this line onto the 3D map is parallel to the vertical

direction. Let us define the intersections of this line with

the boundary of the detection Sl, πt, πd = λ ∩ ∂Sk
l , as

depicted in Figure 2 with red dots, while πk
i is the black dot.

These two points in the image correspond to the vertical

extremities of the object. Now let us consider the line Λ in

the 3D map such that it contains pi and that it is parallel to

the vertical direction, i.e., we will suppose that the detected

object of interest is aligned with the vertical direction in the

world frame. Let π̂t and π̂d be the 3D map rays obtained

by back projecting the image points πt and πd, respectively.

Now we define pt = π̂t ∩ Λ and pd = π̂d ∩ Λ. These two

points correspond to the vertical extremities of the object in

the 3D map, as seen in Figure 3. Note that the coordinates

of rWk , together with the coordinates of the point pi, are

given in the dimensionless state vector. Then the estimated

object height can be approximated as the Euclidean distance

D(pt,pd).
Given f , a symmetric density centered at zero (e.g., a

Gaussian), we can evaluate p(Sl|Hl, d,N ) as

p(Sl|Hl, d,N ) = f(|dD(pt,pd)−Hl|; 0, σ). (5)

The dispersion parameter σ in f is important to define

to give a proper weight to each observation in the esti-

mation scheme. The density f is modeled as a Gaussian

density since the only source of uncertainty considered at

the moment is the 3D position of pi, which is estimated

through a Kalman filter. In particular, as the position of pi

is uncertain, and is estimated as in [2] in the dimensionless

space, with an uncertainty Ppipi
, we can estimate the ex-

pected variance on D(pt,pd). Let us associate the same

covariance matrix Ppipi
(calculated by the MonoSLAM al-

gorithm) to each of the points pt,pd. Then, the variance on

D can be calculated by standard uncertainty propagation:

σ2
D =

∂D

∂pt

Ppipi
(
∂D

∂pt

)T +
∂D

∂pd

Ppipi
(
∂D

∂pd

)T ,

= 2
∂D

∂pt

Ppipi
(
∂D

∂pt

)T

= 2JPpipi
JT ,

(6)

where J is the gradient of the distance function with respect

to pt, i.e.,

J =
1

D
(pt − pd). (7)

Then, given that f(d; 0, σ) is the density of a

Gaussian random variable with variance σ2, F (d) =
f(|dD(pt,pd)−Hl|; 0, σ) is the density of a Gaussian ran-

dom variable with variance σ2

D(pt,pd)2
and for that reason

we use σ2 = σ2
DD(pt,pd)

2 as the variance of f , so that

f(|dD(pt,pd)−Hl|; 0, σ) has variance σ2
D.

The global state posterior is updated every time a new

observation is obtained by multiplying it by the likelihood

of the new observation:
∑

Hl,m
p(Sl|Hl,m, d,N )p(Hl,m).

An observation is generated by each 3D feature whose pro-

jection lies inside an object detection region each time the

object detection algorithm is ran. The dispersion of the like-

lihood of the new observation is calculated using the covari-

ance of its respective 3D feature as described above. We
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Figure 3. Camera-Object configuration for point-cloud observa-

tions. RW

k is the 3D camera center, πt and πd are the object ex-

tremities in the image. pi is a 3D point in the object with πk

i its

image projection. pt and pd are the 3D object extremities calcu-

lated using πt, πd, and the world frame vertical line Λ.

expect the likelihood to have a larger dispersion the bigger

the covariance of the 3D feature is. The scale parameter d

is calculated as the mode of p(d|N ,D1, . . . ,Dk), the global

state posterior (MAP).

We can also calculate a local scale estimate specific to

each global state posterior update, as the mode of L(d) =∑
Hl,m

p(Sl|Hl,m, d,N )p(Hl,m), the likelihood of the new

observation; this local scale estimate can be interpreted as

an observation of the true scale. For instance, Figure 4

(where the graphs correspond to experiment 1 described

in Section 6) depicts in (b) the evolution along the video

frames of the global scale posterior, with a clear tendency

to reduce the scale estimate variance, in (a) the likelihoods

of the new observations corresponding to each global state

posterior update, and in (c) the evolution of the global scale

parameter estimate along the the local estimates obtained

after each update. The local scale parameter estimates al-

low us to observe the variability of the “observations” being

made.

5. Implementation

Our implementation uses the SceneLib2 library [17]

which is a reimplementation of Davison et al.’s [2] original

algorithm for Kalman-based Monocular SLAM. It also uses

the YOLO v2 algorithm [13], which runs on real time on

an NVIDIA GPU, for generic object detection. YOLO v2

was trained on the 2007 and 2012 PASCAL Visual Object

Classes Challenge datasets [3]. Both of these algorithms

run on real time, and our method requires little computa-

tional expense, which guarantees a real time execution of

the final algorithm.

The object detection function is run every 10 frames.

Each feature point inserted in the map and whose projec-

(a)

(b)

(c)

Figure 4. (a) Likelihoods of new observations. We observe likeli-

hoods with different dispersions since the dispersion is calculated

from the covariance of its respective 3D feature. The color palette

indicates the point in time (the clearer the later in the video). (b)

Evolution of the global scale posterior, and (c) evolution of the

global scale MAP estimate (in bold) along local state estimates for

each update (graphs correspond to experiment 1).

tion falls inside an object region is used to update the global

scale posterior as described in Section 3.

Figure 6 shows an instance of the algorithm for an spe-

cific frame, showing the object detection result, (a), and

camera tracking with 3D map features, (b) and (c).
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Figure 5. Evolution of the global scale MAP estimate (in bold)

along local state estimates for each update in experiment 3.

6. Experimental Results

We first describe the evaluation methodology and then

present the quantitative results.

6.1. Evaluation method

The evaluation of the method is run in parallel to the

algorithm by comparing distances computed based on the

scale estimate with distances obtained by a Kinect. For this

comparison, we use a marker (the same that is used to ini-

tialize the MonoSLAM system) with four unambiguous 3D

map features. Let yW1 , yW2 , yW3 , and yW4 be the locations of

these features as estimated by the MonoSLAM algorithm.

Each time the global state posterior is updated, a new scale

parameter is estimated and this error is computed for this

scale parameter. Let DR() be a function that measures the

true distance from the camera to each feature obtained with

a Kinect. For each feature, an absolute error is computed

as:

ei(d) = |DR(y
W
i )− dD(yWi , RW

k )|, (8)

with RW
k the 3D position of the camera at the current frame

k. Given that there are four feature points, the total absolute

error is calculated as:

ǫ(d) =
1

4

4∑
i=1

ei(d). (9)

The relative error for each feature is defined as:

δi(d) = 100
|DR(y

W
i )− dD(yWi , RW

k )|

DR(yWi )
. (10)

The total relative error is computed as:

∆(d) =
1

4

4∑
i=1

δi(d). (11)

(a)

(b)

(c)

Figure 6. (a) An instance of the YOLO v2 object (bottle) detec-

tion. (b) Feature points detected, those shown in green are inside

an object detection region (the detected bottles). (c) 3D Map de-

picting the feature points and camera position (images correspond

to experiment 1).

6.2. Results

To evaluate the proposed method we performed three ex-

periments considering different types and number of objects

in the scene. In each case a we ran MonoSLAM and the

object detector over a video sequence, estimating the scale

with our method. The absolute and relative errors are es-

timated according the procedure described above. We re-

port the median and standard deviation of these errors for

all the scale updates after the scale has converged, which

is determined visually, and show the evolution of the rela-
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tive error. To have an indication on the expected fluctua-

tions, the relative errors are also calculated without using

the scale estimate, that is, setting d = 1 in equation 10,

which maintains the initial scale that is set by the initializa-

tion of MonoSLAM with a marker of known dimensions.

The purpose of this is determining the cause of fluctuations

in the relative error of the scale.

6.2.1 Experiment 1

In this first experiment, 4 bottles of the same size are used.

Our height prior assigns the true bottle height a probability

of 1, zero elsewhere (i.e., the object size is known). The

sequence that we used contains 950 frames, with a total of

of 226 global scale posterior updates; the statistics are re-

ported after update number 80. The median absolute error

is 0.0191m with standard deviation of 0.0097m; the me-

dian relative error is 1.7197% with a standard deviation of

0.8621%. Figure 7 (a) shows the evolution of the relative

error of the scale, and (b) the evolution of the relative er-

ror with our estimated scale vs. the evolution of the relative

error with a scale set to 1.

6.2.2 Experiment 2

In our second experiment, another object (a microwave

oven) is used. The height prior assigns the true microwave

height a probability of 1 (i.e., the oven size is known). The

sequence that we used contains 1073 frames, with a total

of of 92 global state posterior updates; the statistics are re-

ported after update number 16. The median absolute error

is 0.0243m with standard deviation of 0.0171m; the me-

dian relative error is 2.1455% with standard deviation of

1.7411%. Figure 8 (a) shows the evolution of the relative

error of the scale, and (b) the evolution of the relative er-

ror with our estimated scale vs. the evolution of the relative

error with a scale set to 1.

6.2.3 Experiment 3

In our third experiment, 4 bottles of different sizes are used.

For each object (bottles), the height prior is defined as a uni-

form histogram assigning to each of the four different bottle

sizes a probability of 1
4 . The sequence that we used contains

1081 frames, with a total of of 403 global scale posterior

updates; the statistics are reported after update number 215.

The median absolute error is 0.0123m with a standard de-

viation of 0.0095m; the median relative error is 1.3390%
with standard deviation of 1.0266%. Figure 9 (a) shows the

evolution of the relative error of the scale, and (b) the evo-

lution of the relative error with our estimated scale vs. the

evolution of the relative error with a scale set to 1.

(a)

(b)

Figure 7. (a) Evolution in time of the relative error of the scale

for Experiment 1. (b) Evolution in time of the relative error of

the scale, along the relative error for a constant scale (in bold) for

Experiment 1.

6.3. Discussion

We observe in the three experiments how the error de-

creases as more object observations are integrated in the

scale estimate, obtaining in all cases a median relative er-

ror very close to 2%, after the scale estimate has converged.

As expected, when there is a larger variance in the heights

of the objects (Experiment 3), the error takes more updates

to converge. However, even in this case, the median error is

very low after convergence, with a median of 1.3390%.

In the three experiments we can observe a bigger error

in the first few updates of the scale. The reason for this is

the large covariance of the 3D features used to estimate the

scale, since the MonoSLAM algorithm is at its initial stage.

It may appear that the scale estimate is not stable when

observing the graphs of the evolution of the relative error.

However, when analyzing Figure 4 and 5, the scale appears

rather stable. These fluctuations present in the relative er-

ror appear to be due uncertainties from the Kinect measure-

ments and the MonoSLAM position estimates. This is veri-

fied by comparing the evolution of the relative error with our

estimated scale vs. the evolution of the relative error with a

fixed scale of 1 (keeping the initial scale from MonoSLAM,

which is fixed by the features inserted on a marker with

known dimensions), as can be seen in Figures 7 (b), 8 (b),

and 9 (b), where the fluctuations appear greatly correlated.
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(a)

(b)

Figure 8. (a) Evolution in time of the relative error of the scale

for Experiment 2. (b) Evolution in time of the relative error of

the scale, along the relative error for a constant scale (in bold) for

Experiment 2.

7. Conclusions and Future Work

We have developed a novel method to estimate the global

scale of a 3D reconstruction for monocular SLAM. Based

on the recent advances in generic object recognition, we use

a Bayesian framework to integrate height priors over ob-

servations of detected object sizes in single frames. The

method does not require temporal data association as map

features and detection regions are associated naturally on

single frames. The proposed approach takes advantage of

recently developed techniques for object recognition based

on deep learning that run in real time.

Experimental results considering different number and

types of objects give evidence of the feasibility of our ap-

proach, obtaining median relative errors in average of 2 %.

These preliminary experiments show that it is possible to

perform a rather precise global scale estimation based on

priors on semantic classes of objects. This precision could

allow applications in Augmented Reality to insert objects

in a scene with coherent size or scale drift correction for

navigation of autonomous cars and drones.

There are a few limitations to our approach that we are

currently searching to improve. In particular, the map fea-

tures projections may fall on the detection regions while the

corresponding 3D ray does not intersect the 3D object. An

outlier rejection scheme could be used to filter out these ob-

(a)

(b)

Figure 9. (a) Evolution in time of the relative error of the scale

for Experiment 3. (b) Evolution in time of the relative error of

the scale, along the relative error for a constant scale (in bold) for

Experiment 3.

servations. Another option would be to use a semantic seg-

mentation algorithm for a more precise outline of the object

to avoid 3D map features not in the object falling in the de-

tection outline.

We have used object classes with relatively small intra-

class size variance; we need to test this approach on more

complex priors. We intend to develop a methodology for

constructing prior height distributions for different classes

of objects using measuring sensors such as Kinect, sam-

pling a wide range of specific objects for each given class.

As the proposed method is mostly independent of the 3D

reconstruction and tracking algorithm, it should allow us to

migrate the approach to state of the art monocular SLAM

systems as a future work. This would allow us to test the

method in public datasets such as the KITTI dataset [6] for a

precise comparison with other methods for scale estimation.
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