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Abstract

Underwater images are known to be strongly deterio-

rated by a combination of wavelength-dependent light at-

tenuation and scattering. This results in complex color casts

that depend both on the scene depth map and on the light

spectrum. Color transfer, which is a technique of choice to

counterbalance color casts, assumes stationary casts, de-

fined by global parameters, and is therefore not directly ap-

plicable to the locally variable color casts encountered in

underwater scenarios. To fill this gap, this paper introduces

an original fusion-based strategy to exploit color transfer

while tuning the color correction locally, as a function of

the light attenuation level estimated from the red channel.

The Dark Channel Prior (DCP) [16] is then used to restore

the color compensated image, by inverting the simplified

Koschmieder light transmission model, as for outdoor de-

hazing. Our technique enhances image contrast in a quite

effective manner and also supports accurate transmission

map estimation. Our extensive experiments also show that

our color correction strongly improves the effectiveness of

local keypoints matching1.

1. Introduction

Recent years brought important research and develop-

ments of the underwater exploration based on autonomous

underwater vehicles (AUV’s), which have the advantage of

reducing the need for human intervention with a better cov-

erage efficiency and survey precision. AUV’s have to use

computer vision techniques for autonomous navigation in

various applications such as underwater infrastructure in-

spection, marine biology research and underwater archeol-

ogy. Unfortunately, employing effectively computer vision

techniques in underwater is a challenging task due to the re-

duced visibility of the captured images. In underwater the

light propagation is distorted due to the absorption and scat-

1The first two authors contributed equally to this work.

Initial underwater pair of images

SIFT matching for the results generated by UDCP

SIFT matching for the results generated by our method

Figure 1. No valid matches are obtained when applying the original SIFT

matching procedure [25] on the original pair of underwater images (top

row). In contrast, applying the same matching procedure on the images de-

hazed by UDCP [20] (mid row) and by our technique (bottom row) results

in 30 and 135 correct matches, respectively.

tering, which respectively affect the energy and direction

of propagated light. These distortions result in scenes with

foggy appearance and poor contrast. Moreover, in under-

water, the colors are faded because their composing wave-

lengths are cut differently according to the water depth.

Since the deterioration of underwater scenes results from

the combination of multiplicative and additive processes,

enhancing the visibility in underwater is a challenging task.

Single image based techniques have been introduced only

recently and in general have been inspired by the outdoor

dehazing strategies [9, 16, 37, 23, 1]. One of the most influ-
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ential technique was introduced by He et al. [16] based on

the Dark Channel Prior (DCP). However, due to the color

dependent attenuation, underwater images can not be re-

stored properly using DCP without initial image color spec-

trum restoration (see Fig. 7).

In this work we introduce an original color correction

strategy as a pre-processing step to improve the conven-

tional restoration method derived from the DCP [17]. Our

color correction builds on color transfer.

Color transfer typically transfers the color mean and

standard deviation from a reference image to a target im-

age, and is known to be effective in many contexts. It is

however generally admitted that the global nature of the

color transfer procedure is not suited to the spatially vari-

able color casts encountered in underwater scenes. In un-

derwater, the color correction should ideally depend on the

light attenuation level, which itself depends on the scene

depth and light spectrum. Since conventional color transfer

methods rely on global (and not local) image statistics, they

do not have the capability to tune/adjust the color correction

locally. To circumvent this limitation, we propose to adopt a

fusion-based strategy, and introduce appropriate inputs and

weight maps. In short, as inputs, two color images are re-

spectively defined to compensate a small and a large color

distortion. Those inputs are then blended in proportion to

a weight map reflecting the desired level of color correc-

tion. In our experiments, the level of correction is defined

based on the red channel intensity, which is known to pro-

vide a relevant cue to estimate the light attenuation level in

underwater medium. In practice, the first image is simply

the original image. It is promoted by the fusion when no

color correction is needed. The second input is promoted

in regions of strong attenuation. It is derived by applying a

color transfer procedure to a so-called composite image that

modifies the regions of weak attenuation so that their color

statistics reflect the stronger attenuation encountered in the

image. In that way, the color transfer parameters, which are

estimated globally on the whole picture, become relevant to

correct colors in the regions with significant attenuation.

Quite interestingly, our strategy appears to enhance im-

age contrast in a quite effective manner by circumventing

the wavelength-dependent color attenuation. This ability to

enhance the image contrast is very useful when considering

the many computer vision tasks that rely on image com-

parison (e.g. image matching or optical flow) and on local

appearance changes (gradient-based methods like SIFT or

HoG-based detectors). We demonstrate the utility of our

dehazing method for the task of matching images based on

local feature points using the classical SIFT operator (see

Fig. 1).

Overall, the main contribution of this paper consists in

using a fusion-based approach to modulate the color trans-

fer as a function of the light attenuation, which is highly

non-uniform in underwater environments. This results in

improved underwater visibility, and is shown to benefit

contrast-dependent computer vision tasks.

2. Related Work

A number of methods have been considered to improve

the visibility of underwater images, ranging from hardware

acquisition solutions to image dehazing and color correc-

tion.

Polarizing filters. The polarization-based methods rely

on multiple images to generate a clear underwater im-

age [34, 35, 38]. They use polarizing filters fixed to a cam-

era, and vary the degree of polarization to capture several

images that contain complementary information. Schech-

ner and Averbuch [34] exploit this technique to estimate

the transmission map of the underwater scenes. Polariza-

tion methods have been used also for outdoor image dehaz-

ing [36]. The polarization techniques have been shown to be

effective for static scenes but, due to the multi-acquisition

principle, are not applicable to dynamic acquisition.

Dark channel prior (DCP). Most of the methods inves-

tigated to restore a single underwater image have been in-

spired by recent outdoor dehazing strategies [9, 16, 37, 23,

1], thereby assuming that the light propagation is reason-

ably well approximated by the Koschmieder’s model [22].

A representative example is the Dark Channel Prior (DCP).

Initially introduced by He et al. for outdoor dehazing [16,

17], DCP has been extremely influential for many under-

water dehazing techniques. DCP assumes that the radiance

of an object in a natural scene is small in at least one of the

color component, and consequently defines regions of small

transmission as the ones with large minimal value of colors.

For instance, the approach of Chiang and Chen [6] employs

the DCP to segment the foreground and the background re-

gions, and uses this information to remove the haze and

color variations based on color compensation. Drews-Jr et

al. [20] assume that the predominant source of visual in-

formation under the water lies in the blue and green color

channels. The new prior Underwater Dark Channel Prior

(UDCP) has been shown to be more robust than DCP to

estimate the transmission for the underwater scenes. Red

Channel Prior introduced by Galdran et al. [12] aims to re-

cover colors associated with short wavelengths and is based

on the assumption that, in underwater images, the red com-

ponent reciprocal increases as the distance to the camera

increases.

To find those image regions that are the most haze-

opaque, Emberton et al. [8] designed a hierarchical rank-

based method exploiting a set of features that reflect the

green-blue dark channel intensity, the color channels stan-

dard deviations, and the greyscale gradient. This helps in

refining the back-scattered light estimation, which in turns

improves the light transmission model inversion. Lu and
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al. [27] employ color lines, as in [10], to estimate the am-

bient light, and implement a variant of the DCP to estimate

the transmission. As additional worthwhile contributions,

bilateral filter is considered to remove highlighted regions

before ambient light estimation, and another locally adap-

tive filter is considered to refine the transmission.

Our approach is also a single-image based underwater

dehazing approach that builds on the Dark Channel Prior

of He et al. [16]. It differentiates from previous work by

implementing a simple but effective pre-processing step to

correct the complex color shifts inherent to underwater im-

ages.

Color correction. Most of the methods used to balance

the image colors [7] make a specific assumption to estimate

the color of the light source, and then achieve color con-

stancy by dividing each color channel by its correspond-

ing normalized light source intensity. Among those meth-

ods, the Gray world algorithm [4] assumes that the aver-

age reflectance in the scene is achromatic. Hence, the il-

luminant color distribution is simply estimated by averag-

ing each channel independently. The Max RGB [24] as-

sumes that the maximum response in each channel is caused

by a white patch [7], and consequently estimates the color

of the light source by employing the maximum response

of the different color channels. In their ’Shades-of-Grey’

method [11], Finlayson et al. first observe that Max-RGB

and Gray-World are two instantiations of the Minkowski p-

norm applied to the native pixels, respectively with p = ∞

and p = 1, and propose to extend the process to arbitrary p
values. The best results are obtained for p = 6. The Grey-

Edge hypothesis of Weijer and Gevers [39] further extends

this Minkowski norm framework. It assumes the average

edge difference in a scene to be achromatic, and computes

the scene illumination color by applying the Minkowski p-

norm on the derivative structure of image channels, and not

on the zero-order pixel structure, as done in Shades of Grey.

Despite of its computational simplicity, this approach has

been shown to obtain comparable results than state-of-the-

art color constancy methods, such as the method of [14],

which relies on natural image statistics. Other recent works

include [2], which combines adaptive histogram equaliza-

tion with global color adjustment, and [3], which accounts

for perceptual aspects by adjusting the color distributions in

the Ruderman opponent color space lαβ [33].

Next to the methods relying on light source color estima-

tion, the color transfer approach provides an alternative to

balance colors in cases where the light source is complex. In

short, color transfer manipulates the color values of a source

image so that the target image shares the color statistics of

a reference image. It is typically used to enhance photo-

consistency [31, 30, 15, 18]. A representative example of

color transfer approach that is used later in the manuscript

is the simple and fast method of Reihard et al. [31]. It

performs the transfer in the Ruderman et al. perception-

based lαβ color opponent color space [33], by shifting and

scaling the pixel values of the source image to match the

mean and standard deviation of the reference image. Specif-

ically, once converted to the lαβ color space [32], the trans-

fer works independently on each component c of the color

space, and we have:

IcCT (x) =
σc
R

σc
S

(IcS(x)− ĪcS) + ĪcR (1)

with indices R, S, and CT referring to the reference, the

source, and the color transferred images respectively. ĪcR
and ĪcS denote the mean value of component c in the ref-

erence and source image, respectively. σc
R and σc

S denote

the standard deviation of component c in the reference and

source image, respectively.

In the underwater context, the main limitation of the

above color correction methods lies in their global nature,

which makes it unable to adjust the color correction to spa-

tially varying underwater attenuation levels (which depend

on depth and color spectrum). As can be seen in Fig. 2 and

Fig 4, a straightforward application of conventional color

balance and color transfer methods to the input image tends

to over-compensate the attenuation in regions that are close

to the camera (and thus less attenuated), thereby inducing

reddish appearances. To adjust the color correction locally

and deal with the variable and wavelength-dependent atten-

uation, we introduce a fusion-based approach to modulate,

as a function of the estimated attenuation, the correction

associated to a color transfer procedure (Section 4). The

color corrected image is then restored based on the inver-

sion (Section 5) of the simple and wavelength-independent

Korshmieder light transmission model (Sections 3).

3. Underwater Light Propagation

The comprehensive studies of McGlamery [28] and

Jaffe [19] have shown that the total irradiance incident on

a generic point of the image plane has three main compo-

nents in underwater mediums: direct component, forward

scattering and back scattering.

The direct component is the light reflected directly by

the target object onto the image plane. At each image coor-

dinate vector x, the direct component is expressed as:

ED(x) = J(x)e−ηd(x) = J(x)t(x) (2)

where J(x) is the radiance of the object, d(x) is the dis-

tance between the observer and the object, and η is the

attenuation coefficient. The exponential term e−ηd(x) is

also known as the transmission t(x) through the underwater

medium. Using the same attenuation coefficient, indepen-

dently of the light wavelength, does not reflect the fact that

the attenuation strongly depends on the light color in un-

derwater environments. This severe approximation, which
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Input Image Grey Edges Shades of Grey

Gray World

MaxRGB

Ancuti  et al. Bianco et al. Our Color Correction

Input Image Grey EdgesShades of Grey

Gray World

MaxRGB

Ancuti et al. Bianco et al. Our  Dehazed Result

Figure 2. Underwater color correction using several traditional white

balancing techniques and the underwater techniques of Ancuti et al. [2]

and Bianco et al. [3]. In the first two rows, the foreground dominates the

scene and the attenuation level is relatively uniform. In contrast, in the

last two rows, the scene contains objects at very different depths, induc-

ing different attenuation levels. As a consequence, the color correction

techniques of [2] and [3] result in reddish appearances because they over-

compensate the attenuation in regions that are close to the camera. Our

locally adaptive color correction overcomes this limitation.

is required to invert the transmission model based on the

DCP (see below), is the source of poor enhanced quality if

the wavelength-dependent attenuation is not compensated

in some way (see Fig.2). Our work builds on color transfer

to deal with this issue.

Back-scattering acts like a glaring veil superimposed on

the object. In many practical cases, back-scattering remains

the principal source of contrast loss and color shifting in

underwater images. Mathematically, it is often expressed

as:

EBS(x) = B∞(x)(1− e−ηd(x)) (3)

where B∞(x) is a color vector known as the back-scattered

light.

Forward scattering adds to the irradiance and has been

found to mainly cause image blurring, with little color arti-

fact.

Ignoring the forward scattering component, the simpli-

fied underwater optical model thus becomes:

I(x) = J(x)e−ηd(x) +B∞(x)(1− e−ηd(x)) (4)

This simplified underwater camera model (4) has a simi-

lar form than the model of Koschmieder [22], used to char-

acterize the propagation of light in the atmosphere.

4. Underwater Color Correction

Color correction aims at improving the image aspect,

primarily by removing the undesired color castings due to

Figure 3. Overview of our locally adaptive color correction technique.

The fusion process blends two inputs according to the local attenuation

level. In our experiments, the attenuation weight map A(x) is estimated

based on the red channel intensity. The two inputs correspond to the ini-

tial image (bottom path), and to an image in which the colors of strongly

attenuated regions have been properly corrected (top path, see the text for

details).

Input Image Reference Image 1

Image Mask

Composite Image Naive Color Tranferr

Reference Image 2

Our Color Correction results  (with Mask)

Naive Color Tranferr

Reference Image 3

Naive Color Tranferr

Figure 4. Adapting our input image based on the different levels of atten-

uation. Compared with the naive color transfer procedure (that employs

directly the initial image) our result shows better visibility with less color

distortion and grain effects.

various illumination or medium attenuation properties. In

underwater, the green-bluish appearance needs to be recti-

fied. However, this correction is not straightforward to im-

plement because the color distortion depends on the scene

depth and on the light spectrum, as a consequence of the

wavelength-dependent light attenuation.

In underwater, the color correction should ideally depend

on the light attenuation level. However, conventional color

correction methods rely on global (and not local) image

statistics, and are thus missing the capability to tune/adjust

the color adjustment locally. To circumvent this limitation,

as depicted in Fig. 3, we propose to adopt a fusion-based ap-

proach to adapt the color correction locally. Therefore, we

derive two inputs (one corresponding to the minimal level

of correction, and the second to the maximal level of cor-

rection), and blend them in proportion to the desired level

of correction, which itself corresponds to the level of light

attenuation.

We now explain how the attenuation level is estimated,

and how the inputs are derived.

In our experiments, the attenuation map A(x) is simply

estimated based on the red channel information as:

A(x) = 1− Ir(x)γ (5)
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Reference Images

Input  Images

Our Dehazed Results

Reference 1

Reference 2

Reference 3

Reference 4

Figure 5. Our approach performs well for various (clear underwater) reference images. As a general requirement, the reference images need to have good

distribution of all color channels.

where Ir(x) represents the red channel of the initial un-

derwater image I and γ is the parameter that controls the

gamma correction in the form of power-law expression (we

generate our results with the default value of γ = 1.2). This

way to estimate the attenuation is motivated by several pre-

vious works [5, 12], investigating the correlation between

color attenuation and red channel intensity. It is however

worth mentioning that in turbid waters or in places with

high concentration of plankton, the blue channel may be

significantly attenuated due to absorption by organic matter.

The works in [27, 26] have demonstrated the importance of

accounting for the severe blue attenuation in turbid water

cases. In our framework, this can be done simply by using

the blue channel instead of the red channel to estimate the

light attenuation level when the blue component appear to

be weaker than the red in the initial image.

The first input, which is the one promoted by the fusion

in absence of attenuation, is simply the initial input image,

without color correction. This is because the colors remain

undistorted in absence of attenuation.

The derivation of the second input is a bit more tricky.

To complement the initial image (= first fusion input), it

should be defined to properly correct the colors in regions

that are significantly attenuated in the initial image. We

propose to adopt a color transfer strategy for this purpose

because it effectively corrects severe color inconsistencies

between source and target image statistics, and because ref-

erence underwater images that are characterized by a proper

and weakly attenuated color spectrum are easily available

from numerous underwater studies (e.g. underwater vehi-

cles acquiring images at different depths during a 2D map-

ping survey). To ensure that regions that are largely at-

tenuated in the input underwater image are properly cor-

rected in the color transferred image, the source image pro-

cessed by the color transfer algorithm should be designed

carefully, taking two constraints into account. First, the

largely attenuated regions should remain unchanged in the

source image compared to the initial underwater input, be-

cause their color corrected version are of primary interest

during the subsequent fusion process. Second, the color

distributions of the source image -which directly determine

the global color transfer parameters- should be representa-

tive of a scene captured with significant attenuation, so that

the associated color transfer parameters become appropri-

ate/relevant to deal with largely attenuated regions.

To satisfy those two constraints, we propose to feed the

global color transfer procedure with a composite image de-

fined so that the weakly attenuated regions statistics are

shifted towards the ones of regions with higher attenuation.

Formally, the composite image I ′ is defined by:

I
′

(x) = A(x)I(x) + [1−A(x)]Ī (6)

where Ī is the mean value of the input image, and A(x) is

the attenuation map defined in (5). As can be seen in Fig.4

the foreground regions of the composite image I ′ tend to-

wards the background (see Fig.4), which -as desired- pushes

the global statistics of the composite image towards the

statistics of the regions subject to a larger attenuation. The

Reihard et al. [31] color transfer method, presented in Sec-

tion 2.C, is then applied to the composite image, to generate

the color transferred image I ′CT (x), used as a second fusion

input.

Given the color transferred composite image I ′CT (x)
and the initial image I(x), our final color corrected image

ICC(x) is then generated based on a straightforward fusion

procedure, using the attenuation map A(x) and its recipro-

cal [1−A(x)] to weight each input:

ICC(x) = A(x)I
′

CT (x) + [1−A(x)]I(x). (7)

5. Underwater Dehazing and Transmission Es-

timation

To dehaze the underwater images we have built on the

method of He et al. [17]. The output of the color correc-
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Input Images Our Estimations (Ref1)DCP (He et al.) UDCP (Drews-Jr  et al.)MDCP (Gibson et al.) Our Estimations (Ref2) Our Estimations (Ref3) Our Estimations (Ref4)

Reference 1 Reference 2 Reference 3 Reference 4

Figure 6. Estimated transmission maps generated by different specialized underwater techniques (DCP [17], MDCP [13], UDCP [20]) and our approach

generated with four different reference images.

tion step, denoted ICC(x) is restored by inverting the im-

age formation model defined by Eq. 4. Formally, when

Ω(x) defines a local patch centered in x, the Dark Channel

Prior [17] states that miny∈Ω(x) (minc∈r,g,b J
c/B∞

c) ≈ 0
for all x. Hence, based on the image formation model (4),

we can estimate the transmission as:

t(x) = 1− min
y∈Ω(x)

(

min
c∈r,g,b

IcCC(y)/B∞
c

)

(8)

the large values of the dark channel DC(x), defined as

DC(x) = miny∈Ω(x)(minc∈r,g,bI
c
CC(y)), correspond to

locations x where t(x) is close to 0, and where ICC(x) ≈

B∞.

To solve (8), we need to estimate B∞. Therefore, as

in [17], we observe that the DCP also implies that the large

values of the dark channel DC(x), defined as DC(x) =
miny∈Ω(x)(minc∈r,g,bI

c
CC(y)), correspond to locations x

where t(x) is close to 0, and where ICC(x) ≈ B∞. The

brightest pixel among those pixels with large dark channel

is chosen to estimate B∞. Formally,

B∞ = ICC(y∗), with

y∗ = arg max

y|DC(y)>DC99.9

(

IrCC(y) + IgCC(y) + IbCC(y)
)

(9)

where y∗ denotes the location of the brightest pixel among

those pixels whose dark channel value lies above the 99.9th

percentile DC99.9, while r, g, b refer to the red, green and

blue color components, respectively.

6. Results and Discussion

We have extensively tested our new technique for vari-

ous underwater images (e.g. different level of bluish and

greenish underwater scenes). The influence of the reference

image for underwater dehazing and for estimating the trans-

mission maps are shown in Fig. 5 and Fig. 6, respectively.

As can be seen our approach is quite robust and stable when

using as a reference underwater images taken in good il-

lumination conditions, where the water attenuation is re-

duced. Besides presenting comparative results for estimat-

ing the transmission map and underwater dehazing in this

section we demonstrate the utility of our approach for the

problem of image matching based on local feature points.

6.1. Transmission Qualitative Evaluation

Following the simplified underwater optical model (4),

estimating an accurate transmission map t(x) is crucial to

restore effectively the latent image. Here, we compare the

transmission estimated by various DCP related techniques

and our method. In Fig.6 we demonstrate that the trans-

mission estimation based on our color correction approach

is quite robust and is only slightly influence by the chosen

reference image. Additionally, in Fig.6 we present compar-

ative results of the estimated transmission maps using DCP,

MDCP , UDCP and our approach. As can be seen our strat-

egy is able to better estimate transmission map compared

with DCP and MDCP and yields comparable results with

the UDCP technique of [20]. However as discussed in the

next section and shown in Fig.7, our method is more com-

petitive to restore the visibility compared with UDCP.
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Input Images Our ResultsDCP (He et al.) UDCP (Drews-Jr  et al.)MDCP (Gibson et al.) Our Color Correction

Figure 7. Comparison to the specialized dehazing techniques: (DCP) [16], (MDCP) Gibson et al.[13] and UDCP [20]. The quantitative evaluation is

shown in Table 1.

6.2. Underwater Dehazing Evaluation

Fig.7 presents several comparative results for a set of

10 underwater images. We compare with the DCP, MDCP

and UDCP dehazing techniques. As a reference image we

use the first reference image presented in Fig. 5 and Fig. 6.

The results have been quantitatively evaluated based on the

UCIQUE [41] and PCQI [40] measures. While PCQI is a

blind measure that evaluates the image contrast, UCIQUE

is a specialized underwater dehazing refernceless measure

(for both the larger the metrics, the better the quality). Ta-

ble 1 presents the average values of UCIQUE and PCQI
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Underwater pair of images UDCP dehazing + SIFT matching Our dehazing technique + SIFT matching

Set 1

Set 2

Set 3

Set 4

Figure 8. Considering the 4 set of images (left) we process them by UDCP [20] (middle) and our dehazing strategy (right). The quantitative evaluation

based on the SIFT matching is shown in Table 2.

measures when applied on the 10 image results shown

in Fig. 7. Visually, but also quantitatively, our dehazing

method is able to yield comparative and even better outputs

compared with the others analyzed techniques.

DCP MDCP UDCP Only CC Our method

UCIQUE 0.4690 0.4927 0.5201 0.4688 0.5691

PCQI 0.9049 0.9081 0.8038 0.8417 0.9634

Table 1. Average values of UCIQUE and PCQI of the dehazed results

shown in Fig7.

6.3. Underwater Image Matching

The effects of strong scattering in underwater adds com-

plexity to various computer vision algorithms such as de-

tection and localization. For instance one of the main limi-

tation of the existing underwater SLAM (Simultaneous Lo-

calization and Mapping) techniques is due to the lack of

robust, stable and local feature points that can be matched

reliably in various and challenging underwater scenes [21].

We prove the utility of our technique for the task of

matching images based on local feature points consider-

ing the well-known SIFT operator [25]. In our evaluation

we use four challenging underwater image pairs shown in

Fig 8. The evaluated images are challenging because de-

spite of relatively simple geometry that relates them, the

SIFT operator is not able to find any valid match when ap-

plied on the original underwater images.

Table 2 displays the repeatability scores [29] and the

number of correct SIFT matches for the images generated

by our approach and the UDCP technique [20]. As a general

remark both approaches obtain similar repeatability scores.

However, applying the same matching procedure [25], us-

ing our dehazed results we are able to obtain a significant

additional number of valid matches compared to UDCP.

Original UDCP Our Results

Repeat. #correct Repeat. #correct Repeat. #correct

set 1 0 0 0.05 30 0.07 135

set 2 0 0 0.07 110 0.05 248

set 3 0 0 0.09 16 0.07 331

set 4 0 0 0.19 47 0.16 667
Table 2. The repeatability and number of correct SIFT matches for the set

of images shown in Fig8.

7. Conclusion

In this paper we introduce a simple but effective color

correction approach for underwater images. Inspired by the

DCP [16] and the simple color transfer approach of [31],

our comprehensive evaluation demonstrates that our strat-

egy can effectively estimate transmission map and remove

the haze effect for various underwater scenes. Moreover, we

prove the utility of our dehazing method for a fundamental

underwater computer vision application: matching images

based on local feature points.
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