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Abstract

The latest deep learning approaches perform better than

the state-of-the-art signal processing approaches in vari-

ous image restoration tasks. However, if an image contains

many patterns and structures, the performance of these

CNNs is still inferior. To address this issue, here we propose

a novel feature space deep residual learning algorithm that

outperforms the existing residual learning. The main idea

is originated from the observation that the performance of a

learning algorithm can be improved if the input and/or label

manifolds can be made topologically simpler by an analytic

mapping to a feature space. Our extensive numerical stud-

ies using denoising experiments and NTIRE single-image

super-resolution (SISR) competition demonstrate that the

proposed feature space residual learning outperforms the

existing state-of-the-art approaches. Moreover, our algo-

rithm was ranked third in NTIRE competition with 5-10

times faster computational time compared to the top ranked

teams.

1. Introduction

Image restoration tasks such as denoising and super-

resolution are essential steps in many practical image pro-

cessing applications. Over the last few decades, various

algorithms have been developed, which include non-local

self-similarity (NSS) models [2], total variation (TV) ap-

proaches [22], and sparse dictionary learning models [9].

Among them, the block matching 3D filter (BM3D) [7]

is considered as the state-of-the art algorithm. In general,

these methods are dependent on the noise model. More-

over, these algorithms are usually implemented in an iter-

ative manner, so they require significant computational re-

sources.

Recently, deep learning approaches have achieved

tremendous success in classification [19] as well as low-

level computer vision problems [24]. In image denois-

ing and super-resolution tasks, many state-of-the-art CNN

algorithms [4, 5, 21, 32] have been proposed. Although

the performance of these algorithms usually outperforms

the non-local and collaboration filtering approaches such as

BM3D, in case of certain images that have many patterns

(such as Barbara image), CNN approaches are still inferior

to BM3D.

Therefore, one of the main motivations of this work is

to develop a new CNN architecture that overcomes the lim-

itation of the state-of-the-art CNN approaches. The pro-

posed network architectures are motivated from a novel per-

sistent homology analysis [11] on residual learning for im-

age processing tasks. Specifically, we show that the resid-

ual manifold is topologically simpler than the original im-

age manifold, which may have attributed the success of

residual learning. Moreover, this observation leads us to

a new network design principle using manifold simplifica-

tion. Specifically, our design goal is to find mappings for

input and/or label datasets to feature spaces, respectively,

such that the new datasets become topologically simpler

and easier to learn. In particular, we show that the wavelet

transform provides topologically simpler manifold struc-

tures while preserving the directional edge information.

Contribution: In summary, our contributions are as fol-

lowing. First, a novel network design principle using mani-

fold simplification is proposed. Second, using a recent com-

putational topology tool called the persistent homology, we

show that the existing residual learning is a special case of

manifold simplification and then propose a wavelet trans-

form to simplify topological structures of input and/or label

manifolds.
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Figure 1. Proposed wavelet domain deep residual learning network for the Gaussian denoising task.

Bicubic x2 (256ch) Bicubic x3,x4 (320ch) Unknown x2,x3,x4 (320ch)

Input WT( BU(LR) ) COPY ch(LR)

Label Input - WT(HR) Input - PS(HR)

1st layer Conv → ReLU Conv → ReLU

2nd layer Conv → BN → ReLU Conv → BN → ReLU

Long bypass layer LongBypass(1) - -

1st module

BypassM1 →
Conv→BN→ReLU→
Conv→BN→ReLU→

Conv →BN→
SumF(BypassM) →

ReLU

BypassM1 →
Conv→BN→ReLU→
Conv→BN→ReLU→

Conv →BN→
SumF(BypassM) →

ReLU

BypassM1 →
Conv→BN→ReLU→
Conv→BN→ReLU→

Conv →BN→
SumF(BypassM) →

ReLU

Repeat 1st module 5 times (2th∼6th module) 11 times (2th∼12th module) 12 times (2th∼12th module)

Long bypass & catch layer

Sum of “LongBypass(1)” and

“Output of 6th module”

→ BN→ ReLU

- -

Long bypass layer LongBypass(2) - -

Repeat 1st module 6 times (7th∼12th modules) - -

Long bypass & catch layer

Sum of “LongBypass(2)” and

“Output of 12th module”

→ BN→ ReLU

- -

Last layer

Conv→BN→ReLU→
Conv→BN→ReLU→

Conv

Conv→BN→ReLU→
Conv→BN→ReLU→

Conv

Conv→BN→ReLU→
Conv→BN→ReLU→

Conv

Restoration IWT(Input-Output) IPS(Input-Output)

* WT: Haar Wavelet Transform, BU: Bicubic Upsampling, LR: Low Resolution image, HR: High Resolution image, Conv: 3× 3 Convolution, BN:

Batch Normalization, BypassM: Sending output of previous layer to last layer of module(M is module number), SumF: Sum of output of previous

layer and BypassM output, COPY ch: Copy input image (scale x scale) times on channel direction, PS: sub-Pixel Shuffling, IPS: Inverse sub-Pixel

Shuffling, IWT: Inverse Wavelet Transform

Table 1. Proposed network architectures for NTIRE SISR competition from bicubic and unknown downsampling schemes.

2. Related Work

One of the classical approaches for image denoising is

a wavelet shrinkage approach [10], which decomposes an

image into low and high frequency subbands and applies

thresholding in the high frequency coefficients [23]. Ad-

vanced algorithms in this field are to exploit the intra- and

inter- correlations of the wavelet coefficients [6].

In neural network literature, the work by Berger et al [3]

was the first which demonstrated similar denoising perfor-

mance to BM3D using multi-layer perceptron (MLP). Chen

et al. [4, 5] proposed a deep learning approach called train-

able nonlinear reaction diffusion (TNRD) that can train fil-

ters and influence functions by unfolding a variational op-

timization approach. Recently, based on skipped connec-
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tion and encoder-decoder architecture, a very deep residual

encoder-decoder networks (RED-Net) was proposed for im-

age restoration problems [21].

Residual learning has multiple realizations. The first ap-

proach is using a skipped connection that bypasses input

data of a certain layer to another layer during forward and

backward propagations. This type of residual learning con-

cept was first introduced by He et al. [13] for image recogni-

tion. In low-level computer vision problems, Kim et al. [18]

employed a residual learning for a super-resolution method.

In these approaches, the residual learning was implemented

by a skipped connection corresponding to an identity map-

ping. In another implementation, the label data is trans-

formed into the difference between the input data and clean

data. For example, Zhang et al. [32] proposed a denoising

convolutional neural networks (DnCNNs) [32], which has

inspired our method.

3. Theory

3.1. Generalization bound

Let X ∈ X and Y ∈ Y denote the input and label data

and f : X → Y denotes a function living in a functional

space F . Then, one is interested in the minimization prob-

lem: minf∈F L(f), where L(f) = ED‖Y − f(X)‖2 de-

notes the risk. A major technical issue is, however, that the

associated probability distribution D is unknown. Thus, an

upper bound is used to characterize the generalization per-

formance. Specifically, with probability ≥ 1 − δ with a

small δ > 0, for every function f ∈ F ,

L(f) ≤ L̂n(f)
︸ ︷︷ ︸

empirical risk

+ 2R̂n(F)
︸ ︷︷ ︸

complexity penalty

+3

√

ln(2/δ)

n
(1)

where R̂n(F) denotes the Rademacher complexity [1].

In neural network, empirical risk is determined by the

representation power or capacity of a network [27], and

the complexity penalty is determined by the structure of a

network. It was shown that the capacity of representation

power grows exponentially with respect to the number of

layers [27], which justifies the use of a deep network com-

pared to shallow ones. However, the complexity penalty

in (1) also increases with a complicated network structure.

The main remedy for this trade-off is to use large number of

training dataset such that the contribution of the complex-

ity penalty reduces much more quickly so that the empirical

risk minimization (ERM) converges consistently to the risk

minimization [28].

However, for the intermediate size of the training data,

there still exist gaps between the ERM and the risk mini-

mization. One of the most important contributions of this

paper is to reduce the gap by using a relatively simpler net-

work, by reducing the complexity of the data manifold.

Specifically, for a given deep network f : X → Y ,

our design goal is to find mappings Φ and Ψ to the fea-

ture spaces for the input and label datasets, respectively.

Then, the resulting datasets composed of X ′ = Φ(X) and

Y ′ = Ψ(Y ) may have simpler manifold structures. This

can be shown in the following diagram:

X
f //

Φ

��

Y

Ψ

��
X ′

Φ
−1

OO

g // Y ′

Ψ
−1

OO

from which our goal is to find an equivalent neural network

g : X ′ → Y ′ that has a better performance than the original

network f : X → Y .

For example, in recent deep residual learning [32], the

input transform T is an identity mapping and the label trans-

form is given by Y ′ = Ψ(Y ) = Y −X . Using persistent

homology analysis, Section 1 in the supplementary material

shows that the label manifold of the residual is topologically

simpler than that of Y . Accordingly, the upper bound of the

risk of g : X ′ → Y ′ can be reduced compared to that of

f : X → Y .

Inspired by this finding, this paper proposes a wavelet

transform as a good transform to reduce the topological

complexity of resulting input and label manifolds. More

specifically, thanks to the vanishing moments of wavelets,

the wavelet transform can annihilate the smoothly varying

signals while retaining the image edges [8, 20], which re-

sults in the dimensional reduction and manifold simplifica-

tion. Indeed, this property of the wavelet transform has been

extensively exploited in wavelet-based image compression

tools such as JPEG2000 [26], and this paper shows that this

property also improves the performance of deep network for

image restoration tasks.

3.2. Persistent homology

The complexity of a manifold is a topological concept.

Thus, it should be analyzed using topological tools. In al-

gebraic topology, Betti numbers (βm) represent the num-

ber of m-dimensional holes of a manifold. For example, β0

and β1 are the number of connected components and cycles,

respectively. They are frequently used to investigate the

characteristics of underlying manifolds [11]. Specifically,

we can infer the topology of our data manifold by varying

the similarity measure between the data points and track-

ing the changes of Betti numbers. As allowable distance ǫ
increases, data point clouds merge together and finally be-

come a single cluster (Fig. 2(a)). Therefore, the point clouds

with high diversity will merge slowly and this will be rep-

resented as a slow decrease in Betti numbers. For example,

in Fig. 2(a), the dataset Y 1 is a doughnut with a hole (i.e.

β0 = 1 and β1 = 1) whereas Y 2 is a sphere-like cluster
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Figure 2. (a) Point cloud data K of true space Y and its config-

uration over ǫ distance filtration. Y 1 is a doughnut and Y 2 is a

sphere shaped space each of which represents a complicated space

and a simpler space, respectively. (b) Zero and one dimensional

barcodes of K1 and K2. Betti number can be easily calculated by

counting the number of barcodes at each filtration value ǫ.

(i.e. β0 = 1 and β1 = 0). Accordingly, Y 1 has longer zero

dimensional barcodes persisting over ǫ in Fig. 2(b). This

persistence of Betti number is an important topological fea-

ture and the recent persistent homology analysis utilizes this

to investigate the topology of the data manifold[11].

4. Proposed architecture

This section describes two network structures based on

the manifold simplificaiton. One is the primary architecture

used for Gaussian denoising and the other is our NTIRE

2017 competition architecture used for RGB based SISR

problems, which has been developed based on the primary

architecture. For the wavelet transform, we used one level

discrete wavelet transform using Haar wavelet filter.

Denoising architecture: The input and the clean label

images are first decomposed into four subbands (i.e. LL,

LH, HL, and HH) using the wavelet transform. The wavelet

residual images, which are now used as our new labels, are

obtained by the difference between the input and the clean

label images in the wavelet domain. Then, the network is

trained to learn multi-input and multi-output functional re-

lationship between these newly processed input and label.

Here, four patches at the same locations in each wavelet

subband are extracted and used for training. For Gaus-

sian denoising, 40 × 40 image patches are used, resulting

in 40× 40× 4 patches.

The proposed denoising network architecture is shown

in Fig. 1. It consists of five modules between the first and

the last stages. Each module has one bypass connection,

Figure 3. Wavelet decomposition reduces the patch size to a quar-

ter.

three convolution layers, three batch normalizations [17],

and three Rectified Linear Unit (ReLU) [12] layers. The

bypass connection was used for an efficient network train-

ing because it is helpful for training a deep network by al-

leviating the gradient vanishing problem [15, 21]. The first

stage contains two layers: one with a convolution layer with

ReLU which is followed by the other convolution layer with

batch normalization and ReLU. The last stage is composed

of three layers: two layers with a convolution, batch nor-

malization, and ReLU and the last layer with a convolution

layer. Accordingly, the total number of convolution layers

is 20. The convolution filter size is 3× 3× 320× 320. Dur-

ing the convolution, we used zero padding to maintain the

image size and reduce the boundary effect [18].

In addition to the aforementioned advantage of the

wavelet transform for feature space mapping, there are two

more advantages to perform the wavelet transform. As

shown in Fig.3, the first advantage is that the patch size can

be reduced by half. It can reduce the runtime of the network

due to the size of the output images of layers being halved.

The second one is that the minimum required size of re-

ceptive field can be reduced to obtain a good performance.

Since the number of convolutions is related to the runtime

and learning time, the smaller the required receptive field

size, the more effective it is to reduce the computation time.

NTIRE SISR competition architecture: The proposed

networks for NTIRE 2017 SISR competition are shown in

Table 1. These architectures are extended from the pri-

mary denoising architecture. Depending on the decimation

schemes (bicubic x2, x3, x4, and unknown x2, x3, and x4)

for low resolution dataset, we implemented three different

architectures.

Specifically, for the bicubic cases, we first generated the

upsampled image using bicubic interpolation and the ex-

tended denoising network structures with the wavelet trans-

form were used for manifold simplification. For the un-

known decimation scheme, however, we employed the sub-

pixel shuffling scheme [25] as the input and label transform

to save the memory and augment the input data to a bigger

image size. As will be shown later in persistent homology

analysis in the supplementary material, this sub-pixel shuf-

fling transform does not reduce the manifold complexity by
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itself. Still, we could exploit the manifold simplification

from the residual learning in sub-pixel shuffling domain as

shown in Fig. 4 and Table 2 .

Figure 4. Residual based sub-pixel shuffling.

Label image set Original Residual

Unknown x3 29.1242 / 0.8327 30.3025 / 0.8572

Table 2. The effectiveness of the residual based sub-pixel shuffling

in terms of PSNR/SSIM for “Unknown x3’ dataset in the super-

resolution task. The training step was stopped at epoch 50 and the

results are calculated from 100 validation data of DIV2K dataset.

All three SISR architectures have 41 convolution layers

to deal with the dataset composed of 800 high resolution

images. In every case, we used 20 × 20 patch size. Af-

ter the first two layers, a basic module is repeated twelve

times, which is followed by three convolution layers. To re-

construct the bicubic x2 downsampled dataset, we included

two long bypass connections between six basic modules in

the network and the number of channels were 256. For the

other datasets, we did not use the long bypass connection

and the number of channels were 320. The long bypass con-

nection allows faster computation and less parameter size

than using the concatenation layer. Although concatenation

layer is good for reducing the depth of convolution layer,

it is very slow because of inefficient GPU memory usage.

Thus, the long bypass connection is more efficient for SISR

problem. Table 3 shows the effectiveness of the long by-

pass connection.

We used RGB data for different channels rather than lu-

minance channel, because RGB based learning has the ef-

fect of data augmentation.

Problem Without LongBypass LongBypass

Bicubic x2 35.3436 / 0.9426 35.3595 / 0.9427

Table 3. The effectiveness of the long bypass layer in terms of

PSNR/SSIM. This result was calculated from 50 validation data

of DIV2K dataset.

5. Methods

5.1. Dataset

Dataset for denoising network: We used publicly avail-

able Berkeley segmentation (BSD500) [4] and Urban100

[16] datasets. Specifically, we used 400 images of BSD500

and Urban100 datasets for training in the Gaussian denois-

ing task. In addition, we generated 4000 training images by

using data augmentation via image flipping, rotation, and

cropping. To get various noise patterns and avoid over-

fitting, we re-generated the Gaussian noise in every other

epoch during training. For the test dataset, BSD68 and

Set12 datasets were used. All the images were encoded with

eight bits, so the pixel values are within [0, 255]. For train-

ing and validation, Gaussian noises with σ = 15, 30, and

50 were added.

Dataset for NTIRE competition: We used only 800

training dataset of DIV2K for each SISR problem. Instead

of using cropped images, we cropped (20 × 20) patches

randomly from a full image and performed data augmenta-

tion using image flipping, rotation, and downsampling with

the corresponding scale factors of x2, x3, and x4 for each

epoch. It helps to create more diverse patterns of images.

For training dataset with bicubic x3 and x4 decimation, we

used all bicubic x2,x3 and x4 images of DIV2K datasets

together as a kind of data augmentation.

5.2. Network training

Denoising network: The network parameters were ini-

tialized using the Xavier method [14]. We used the regres-

sion loss across four wavelet subbands under l2 penalty and

the proposed network was trained by using the stochastic

gradient descent (SGD). The regularization parameter (λ)

was 0.0001 and the momentum was 0.9. The learning rate

was set from 10−1 to 10−4 which was reduced in log scale

at each epoch. The mini-batch size for batch normalization

was 32 where the images were selected randomly at every

epoch [17]. To use a high learning rate and guarantee a sta-

ble learning, we employed the gradient clipping technique

[18] so that the maximum and minimum values of the up-

date parameter are bounded by the predefined range. These

parameter settings were equally applied to all experiments

of the image denoising. We used 40× 40 patch size and the

network was trained using 53 epochs.

The network was implemented using MatConvNet tool-

box (beta.20) [29] in MATLAB 2015a environment (Math-

Works, Natick). We used a GTX 1080 graphic processor

and i7-4770 CPU (3.40GHz). The Gaussian denoising net-

work took about two days for training.

Training for NTIRE competition: We used 20 × 20
patch size and trained the network for 150 epochs. We used

64 mini-batch size and learning rate of (0.1, 0.00001) in log

scale for 150 epochs with 0.05 gradient clipping factor. For

each epoch, to train more various patterns, we used sub-

epoch system that repeats forward and back propagation

512 times by randomly cropping patches from a full size

image. For the bicubic x3 and x4 cases, we trained the net-
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Images C.man House Peppers Starfish Monar. Airpl. Parrot Lena Barbara Boat Man Couple Average

Algorithm Noise Level: σ = 30

BM3D 28.6376 32.1417 29.2140 27.6354 28.3458 27.4857 28.0707 31.2388 29.7894 29.0465 28.8016 28.8417 29.1041

DnCNN-S 29.2748 32.3199 29.8497 28.3970 29.3165 28.1570 28.5375 31.6104 28.8925 29.3117 29.2492 29.2091 29.5105

Proposed(Primary) 29.6219 32.9357 30.1054 29.0584 29.5597 28.3288 28.6770 32.0163 29.8941 29.6107 29.4065 29.5563 29.8976

Table 4. Performance comparison in terms of PSNR for “Set12” dataset in the Gaussian denoising task. The primary architecture was used.

Images C.man House Peppers Starfish Monar. Airpl. Parrot Lena Barbara Boat Man Couple Average

Algorithm Noise Level: σ = 30

BM3D 0.8373 0.8480 0.8502 0.8282 0.8866 0.8361 0.8320 0.8456 0.8673 0.7777 0.7783 0.7937 0.8318

DnCNN-S 0.8580 0.8515 0.8670 0.8478 0.9032 0.8544 0.8425 0.8559 0.8514 0.7841 0.7949 0.8029 0.8428

Proposed(Primary) 0.8662 0.8589 0.8729 0.8604 0.9116 0.8584 0.8459 0.8669 0.8795 0.7978 0.8022 0.8189 0.8533

Table 5. Performance comparison in terms of SSIM for “Set12” dataset in the Gaussian denoising task. The primary architecture was used.

Figure 5. Denoising results of Barbara, Boats, and Lena images using various methods. [PSNR/SSIM] values are displayed.

work with the bicubic x2, x3, and x4 datasets together to in-

crease the performance of x3 and x4 cases [18]. Other hyper

parameters are remained same with the denoising network.

Using GTX 1080ti, the training of networks for the bicubic

x2 and bicubic x3, x4 and unknown x2, x3, x4 datasets took

almost six days, 21 days and seven days, respectively.

6. Results

6.1. Persistent homology results

To show the correlation between the network perfor-

mance and manifold simplification, we compared the topol-

ogy of the input and the label manifolds in both image and

wavelet domains. The results in the supplementary material

clearly showed that feature space mappings provide simpler
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data manifolds. Specifically, the proposed denoising and

super-resolution algorithms can be benefited from simpler

input manifold from a feature space mapping using wavelet

transform as well as additional simpler label manifold from

residual learning.

6.2. Experimental Results

Denoising: For the quantitative comparison of the de-

noising performance, we used the objective measures such

as the peak signal to noise ratio (PSNR) and the structural

similarity index measure (SSIM) [31]. Table 4, 5 show that

the proposed network outperforms the state-of-the-art de-

noising methods in terms of PSNR and SSIM for all Set12

images. Especially, in the patterned images such as Bar-

bara and House, we attained better performance than using

BM3D in terms of PSNR (0.1dB and 0.8dB, respectively).

Fig. 5 shows the denoising examples in various images. The

proposed methods showed the best visual quality especially

in the edge regions. Moreover, as shown in Table 6, the pro-

posed method showed superior results to the state-of-the-art

approaches in the experiments with BSD68 dataset which

contains diverse patterned images. For 512x512 image size,

the proposed network took only 0.157 seconds even with

the current MATLAB implementation. This is comparable

or even better than the existing approaches.

To further demonstrate the importance of the wavelet de-

composition, additional comparative studies with the base-

line network were performed. Here, an input image is

decomposed to four channels using so-called polyphase

quadrature filter (PQF) bank [30]. Specifically, the PQF

just splits an input image into four equidistant sub-bands

with distinct horizontal and vertical offset without wavelet

filtering. Therefore, it is equivalent to the sub-pixel shuf-

fling scheme in [25] except that input image is first inter-

polated. Accordingly, the networks using PQF have the ex-

actly same architecture except the input and label images so

that we can investigate the effect of the wavelet transform.

Fig. 6 clearly shows that the wavelet transform can improve

the performance compared to the baseline network.

Figure 6. Importance of the wavelet transform for manifold sim-

plification. Here, the Gaussian denoising algorithms with σ = 30.

Barbara and Set12 images were used. In the case of BM3D, Bar-

bara image was used for comparison.

Noise (σ) BM3D DnCNN-S Proposed

15 31.0761/0.8722 31.7202/0.8901 31.8607/0.8941

30 27.7492/0.7735 28.3324/0.8003 28.5599/0.8092

50 25.6103/0.6868 26.2275/0.7163 26.3577/0.7270

Table 6. Performance comparison in terms of PSNR/SSIM for

“BSD68” dataset in the Gaussian denoising task.

Dataset (scale) VDSR DnCNN-3 Proposed-P Proposed

Set5 (2) 37.53/0.9586 37.53/0.9582 37.57/0.9586 38.06/0.9602

Set14 (2) 33.03/0.9124 33.08/0.9126 33.09/0.9129 34.04/0.9205

BSD100 (2) 31.90/0.8960 31.90/0.8956 31.92/0.8965 32.26/0.9006

Urban100 (2) 30.76/0.9140 30.75/0.9134 30.96/0.9169 32.63/0.9330

Average (2) 33.30/0.9202 33.31/0.9199 33.39/0.9212 34.25/0.9286

Set5 (3) 33.66/0.9213 33.73/0.9212 33.86/0.9228 34.45/0.9272

Set14 (3) 29.77/0.8314 29.83/0.8321 29.88/0.8331 30.56/0.8450

BSD100 (3) 28.82/0.7976 28.84/0.7976 28.86/0.7987 29.18/0.8071

Urban100 (3) 27.14/0.8279 27.15/0.8272 27.28/0.8334 28.50/0.8587

Average (3) 29.85/0.8445 29.89/0.8445 29.97/0.8470 30.67/0.8595

Set5 (4) 31.35/0.8838 31.40/0.8837 31.52/0.8864 32.23/0.8952

Set14 (4) 28.01/0.7674 28.07/0.7681 28.11/0.7699 28.80/0.7856

BSD100 (4) 27.29/0.7251 27.29/0.7247 27.32/0.7266 27.66/0.7380

Urban100 (4) 25.18/0.7524 25.21/0.7518 25.36/0.7614 26.42/0.7940

Average (4) 27.95/0.7821 27.99/0.7820 28.08/0.7861 28.78/0.8032

Table 7. Performance comparison in terms of luminance

PSNR/SSIM for various datasets in SISR tasks. The VDSR,

DnCNN-3, Proposed-P (primary-256ch.) networks are 291 dataset

[18] luminance-trained network whereas the proposed network is

trained using RGB of DIV2K dataset. For fair comparison, re-

stored RGB was used to calculate the luminance PSNR/SSIM val-

ues.

NTIRE SISR competition: Our proposed networks

were ranked third in NTIRE SISR competition. In particu-

lar, our networks were competitive in both performance and

speed. More specifically, compared to the 14-67 seconds

computational time by the top ranked groups’ results, our

computational time was only 4-5 seconds for each frame.

Since the wavelet transform is effective in reducing the

manifold complexity compared to the sub-pixel shuffling

scheme, in terms of dataset specific ranking, our ranking

with the bicubic SISR dataset was better than with the un-

known decimation dataset where we just exploited the man-

ifold simplification from the residual learning.

Figs. 7, 8 clearly show the performance of our network in

various SISR problems. We also confirmed that our network

outperforms the existing state-of-the-art CNN approaches

for various dataset in Table 7. In particular, the proposed

methods exhibited outstanding performance in the edge ar-

eas. We provide more comparative examples in the supple-

mentary material.

7. Conclusion

In this paper, we proposed a feature space deep resid-

ual learning algorithm that outperforms the existing residual

learning approaches. In particular, using persistent homol-

ogy analysis, we showed that the wavelet transform and/or
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Figure 7. Performance comparison of SISR at scale factor of 4 of bicubic downsampling. The proposed network is RGB based competition

network. Left : input, Center : restoration result, Right : label.

Figure 8. Performance comparison of SISR at scale factor of 4 of unknown downsampling. The proposed network is RGB based competition

network. Left : input, Center : restoration result, Right : label.

residual learning results in simpler data manifold. This find-

ing as well as the experimental results of Gaussian denois-

ing and NTIRE SISR competition results confirmed that the

proposed approach is quite competitive in terms of perfor-

mance and speed. Moreover, we believe that the persistent

homology-guided manifold simplification provides a novel

design tool for general deep learning networks.
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