
PaletteNet: Image Recolorization with Given Color Palette

Junho Cho, Sangdoo Yun, Kyoungmu Lee, Jin Young Choi

ASRI, Dept. of Electrical and Computer Eng., Seoul National University

{junhocho, yunsd101, kyoungmu, jychoi}@snu.ac.kr

Abstract

Image recolorization enhances the visual perception of

an image for design and artistic purposes. In this work, we

present a deep neural network, referred to as PaletteNet,

which recolors an image according to a given target color

palette that is useful to express the color concept of an im-

age. PaletteNet takes two inputs: a source image to be re-

colored and a target palette. PaletteNet is then designed

to change the color concept of a source image so that the

palette of the output image is close to the target palette. To

train PaletteNet, the proposed multi-task loss is composed

of Euclidean loss and adversarial loss. The experimental

results show that the proposed method outperforms the ex-

isting recolorization methods. Human experts with a com-

mercial software take on average 18 minutes to recolor an

image, while PaletteNet automatically recolors plausible re-

sults in less than a second.

1. Introduction

Color is an essential element of humans’ visual percep-

tions of their daily lives. Beautiful color harmony in art-

works or movies fulfills our desires for color. Thus, design-

ers and artists must put effort into building basic color con-

cepts into their works. A sophisticated selection of color

gives a sense of stability, unity, and identity to works. In

general, designers express a color concept through a color

palette. The color palette of an image represents the color

concept of an image with six colors ordered as shown in

Figure 1. The corresponding color palette that contains

distinctive color concept is subjective, and the number of

palettes is uncountable. Typical designers would carefully

select a color concept by the palette prior to the work. Fur-

thermore, recoloring an image with a target color palette

is preferred for images to maintain uniformity and identity

among artworks. Thus, the recolorization problem occupies

a critical position in enhancing the visual understanding of

viewers.

Researchers have been tackling the recolorization prob-

lem with various approaches and purposes. Kuhn et al. [9]

Figure 1. The Images and the Corresponding Palettes. The

palettes express color concept of the images. Collected from De-

signseeds.com [1]

Figure 2. Our Conceptual Recoloring Model. From a pair of a

source image and a target palette, the resulted image is recolored

according to the color concept of the target palette.

proposed a practical way to enhance visibility for the color-

blind (dichromat) by exaggerating color contrast. However,

it ignored the color concept and lacked aesthetics. Casaca et

al. [2] proposed a colorization algorithm that requires seg-

mentation masks and user’s hints for the colors of some pix-

els. Even though the colorization based on the color hints

was considered the desired color for each pixel, the algo-

rithms were far from automatic colorization.

To reflect the intended color concept, the color palette-

based methods [5, 3] have been proposed. Greenfield et

al. [5] proposed a color association method using palettes.

It extracted the color palettes of the source and target images

and recolored the source image by associating the palettes

in the color space. Chang et al. [3] proposed a color trans-

ferring algorithm using the relationship between the palettes

of the source and target images. This approach helped users

to have elaborate control over the intended color concept.

However, it is questionable how well the color transform

function [5, 3] in the palette space could be utilized for

the content-aware recolorization. For example, flowers look

62

ResBlock1 ResBlock2 ResBlock3

Target Palette �"

Source Image

Feature Encoder

content feature ��

[�" , ��]

[�� , ��]

�� �� ��

[�" , �� , ��][�" , �� , ��]
Recoloring Decoder

…

18

18

�/16

�/16

3×�×�

512×
�

16
×
�

16

512

Conv

Color Prediction 2×�×�

�6�
89

��

[��
;, ��]

Convolution

Concat

Deconvolution

Figure 3. The Proposed Framework. PaletteNet has two subnets: Feature encoder network which extracts the content feature from the

source image and recoloring decoder network which decodes the content feature and the target palette into the recolored output.

more complicated than the sky. Accordingly, the recoloring

of flowers necessitates more effort than the recoloring of

the sky. Each of the objects has different color characteris-

tics, and the simple palette matching recolorization neglects

them. Moreover, performing color transformation globally

on images might not be appropriate. For example, we might

want the red tulip and the red bird in an image to be recol-

ored separately to a yellow tulip and a green bird. Thus, it is

natural to deploy a deep neural network that has strength in

understanding the contents (tulips, bird, etc.) of the source

image.

In this paper, we propose a deep learning architecture

for the content-aware image recoloring based on the given

target palette. The proposed deep architecture requires two

inputs, which are a source image and a target palette. As de-

scribed in Figure 2, the output image is a recolored version

of the source image with respect to the target palette. In our

paper, the color palette contains six of the most representa-

tive colors in an artwork. Six is minimal and still represen-

tative enough to express analogous, monochromatic, triad,

complementary, or compound combinations of colors. Al-

though the spatial dimension of the palette is small, we as-

sume the amount of information in the palette is abundant to

express a specific color concept. To obtain a realistic recol-

orized image with the given palette, we propose an encoder-

decoder network and multi-task loss function composed of

Euclidean loss and adversarial loss. To gather image and

palette pairs to train the proposed network, we scraped the

Design-seeds website [1] and created a dataset. Since the

different color versions of an image do not usually exist,

we propose the color augmentation method to expand the

dataset for training the deep neural network. The proposed

network is trained in an end-to-end and data-driven way. In

the experiments, we show our model outperforms the exist-

ing recolorization model and produces plausible results in a

second, while a human expert takes 18 minutes on average.

2. Structure of PaletteNet

Figure 3 depicts the overall structure of the proposed

PaletteNet. PaletteNet includes two subnets: feature en-

coder (FE) and recoloring decoder (RD). The inputs of

PaletteNet are Is, the source (s) image in LAB and Pt, the

target (t) palette. Target palette Pt of PaletteNet is the LAB

color value of 18-dimensional vector, defined by the six

representative colors. The output of PaletteNet is Îabt , the

ab channel image, whose ab (color) is altered from source.

Final output Ît is formed by concatenating output of net-

work Îabt and source image luminance ILs . Thus, It has

identical spatial size of the source image. In short, Palet-

teNet changes color channel conditioned to fixed luminance

value.

FE in PaletteNet, which is fully convolutional neural net-

work, is responsible to recognize contextual information of

Is and encode objects, texture, color as a content feature c.

FE reduces the spatial size of each feature map in half by

residual blocks [6]. It also outputs each intermediate hierar-

63

chical feature map ci as the content feature. With a simple

notation,

FE(Is) = c = {c1, c2, c3, c4}. (1)

In RD of PaletteNet, the target palette Pt is combined

with the content feature c to perform recolorization. At

first, RD takes c1 and Pt as an initial input. After repeat-

ing Pt spatially on every pixel of c1 to match the dimen-

sions, the repeated Pt and c1 are concatenated in depth,

which denoted as as [Pt, c1]. Then deconvolution (Deconv)

layer upsamples [Pt, c1] into d1. The Deconv operations

are depicted with colored arrows in Figure 3 and the out-

put of the operation with same color. The following De-

conv layers upsample [c2,d1] into d2, [Pt, c3,d2] into d3,

[Pt, c4,d3] into d4 in the same mechanism. Finally, a con-

volution layer transforms [ILs ,d4] into ab color prediction,

Îabt . The architecture with skip-connections from FE to RD

is similar to U-net [11] which is powerful at segmentation

tasks. Because recolorization depends massively on image

content, RD uses the hierarchical content feature from FE,

which encodes the spatial information of image. Since all

the operations are differentiable, FE and RD can be trained

jointly for encoding the contents and recoloring with the

target palette. For fast convergence and stable learning, the

non-linear function of tanh follows after the final convolu-

tion layer. Our PaletteNet G can be denoted simply as:

G(Is,Pt) = RD(FE(Is),Pt)) = RD(c,Pt) = Îabt .
(2)

Instance Normalization [13] layer follows all the convo-

lution and deconvolution layers in FE and RD. LeakyReLU

activation function is applied after the normalization layers.

3. Training of PaletteNet

For training PaletteNet, there must be pairs of an image-

palette (Ij ,Pj). We define N pairs of dataset as Dorig =
{(Ij ,Pj)|j = 1, ..., N}. We need a source and a target

image-palette pairs which has different color concept of

(Ij ,Pj) in order to learn recoloring. Of course, different

color version of an image usually does not exist. There-

fore we generate more image-palette pairs from (Ij ,Pj)
through the proposed color augmentation method. The de-

tailed color augmentation step is explained in Section 4.1.

We generate training data tuple (Is,Pt, It) from (Ij ,Pj)
through color augmentation. PaletteNet accepts Is and Pt

as inputs, and learns to recolor output Ît with chromaticity

of Pt.

PaletteNet is trained by optimizing two loss functions:

Euclidean loss (E-loss, LE) and Adversarial loss (Adv-loss,

LAdv). Training has two phases and is depicted in Figure 4.

The first phase is pretraining FE and RD with E-loss. In

this process, FE learns how to extract the content feature of

FE �

��

��

�&�
'(

�

��
'(

(��, ��)~�0123

E-loss

real?

fake?

RD

D
N

real?

fake?

1. Pretrain FE + RD

with E-loss

2. Train RD with

E-loss + Adv-loss

��

concat

��
4

�

�&�

Adv-loss

Figure 4. The training PaletteNet involves two phases: 1. Pretrain

FE and RD with E-loss (Section 3.1), 2. Freeze the parameters of

FE and train RD with additional Adv-loss (Section 3.2). This split

training stables learning recolorization process with Adv-loss. See

how to compose the training data tuple in Section 3.3.

the image and RD learns how to recolorize with the con-

tent feature and the given target palette. E-loss trains G by

minimizing pixel-wise distance between Ît and It.

However with E-loss, G only learns the color augmented

relation between Is and It. Color augmentation is an es-

sential means of generating different color versions of an

image, but not the ultimate function to learn. Therefore in

second phase, we introduce additional loss term, Adv-loss

to train G to generate more realistic images like Ij ∈ Dorig,

instead of learning the color augmented relations. Adv-loss

is first proposed from GAN [4], which is a promising frame-

work for generating realistic images. GAN adopts two neu-

ral networks, the discriminator network and the generator

network. The discriminator network is trained to distin-

guish natural images and generated image by the genera-

tor network. On the other hand, the generator network is

trained to produce images that are indistinguishable from

natural images by the discriminator network. This competi-

tive training against each other trains the generator network

to output realistic images. But if either one of the discrim-

inator network and generator network becomes too power-

ful, the competitive learning breaks and the other one fails

to learn from the powerful opponent. Since our PaletteNet

G has lots of parameters, applying GAN framework from

the beginning of train happens to be a trouble. Thus as de-

picted in Figure 4, we pretrain FE and RD enough with E-

loss at first phase and adopt Adv-loss at second phase to

train RD and the discriminator network D.

3.1. Pretraining of FE and RD with E­loss

With E-loss, update the parameters of G (FE and RD) so

that the Euclidean Norm between the output of PaletteNet

G(Is,Pt) = Îabt and desired ab image Iabt minimizes. E-

64

loss will be as followed:

LE =

H∑ W∑
(Îabt − Iabt)2, (3)

where H,W are height and width of an image and pixel

(x, y) is abbreviated. We overlay the source image lumi-

nance ILs on Îabt and denote the final output LAB image as

Ît.

As E-loss forces G to learn the color augmented relation

between Is and It, we use it only for pretraining FE and

RD. We pretrain G until value of LE converges on training

set.

3.2. Training of RD with Adv­loss

Our proposed Discriminator Network D accepts an im-

age I and a palette P and classifies if the pair (I,P) is re-

lated. Therefore, the purpose of G is to generate the output

Ît to have the color concept of Pt. D accepts the pair (I,P)
by replicating P spatially and concatenating in depth to I ,

which is identical operation [I,P] explained in RD archi-

tecture. D of original GAN [4] views an output of G as

fake, a sample from target data as real. Our D performs

binary classification on a pair (I,P) so that Dfake(I,P) is

the probability of the pair classified as fake (unrelated), and

Dreal(I,P) is the probability of the pair classified as real

(related). The summation of the two probabilities is equal

to 1.

In our adversarial network architecture, G and D are op-

timized to solve the following min-max problem:

min
G

max
D

E(I1,P1)∼Preal
[logDreal(I1,P1)]

+ E(I2,P2)∼Pfake
[logDfake(I2,P2)],

(4)

where (I1,P1) is a fake pair and (I2,P2) is a real pair. To

be more specific, our D views a pair of network generated

image and target palette (Ît,Pt) as fake and a randomly

sampled pair (Io,Po) ∈ Dorig, which are genuine dataset

and not color augmented, as real:

Dreal(Io,Po) = 1, Dfake(Ît,Pt) = 1. (5)

But practically, the size of Dorig is too small and causes

D to cheat by memorizing all the pairs (Io,Po) ∈ Dorig.

As a matter of fact, when G generates recolored Ît com-

paratively well with the color concept of Pt, D barely ob-

serves the pair (I,P) having entirely different color con-

cept. Therefore, D finds it very hard to discriminate be-

tween (Io,Po) and (Ît,Pt), eventually tries to cheat by

memorizing (Io,Po). We experimentally observed D per-

forming strikingly well and not easily fooled ever after 1

epoch training D on Dorig. Therefore following classifica-

tion term is added to prevent D from cheating:

Dfake(Io,Pt) = 1, Dfake(Ît,Po) = 1. (6)

The two terms prevent cheating of D by classifying the un-

related pairs as fake. They are crucial to induce well bal-

anced training of G and D, no longer causing too powerful

D. The classification loss of D is calculated as:

LD =− E[logDfake(Ît,Pt)]− E[logDfake(Io,Pt)]

− E[logDfake(Ît,Po)]− E[logDreal(Io,Po)].

(7)

And the Adv-loss to train G (specifically RD) is calculated

as:

LAdv = −E[logDreal(Ît,Pt)]. (8)

Finally, the total loss function of G is the weighted sum

of the E-loss and the Adv-loss:

LG = λLE + LAdv, (9)

where λ is a weighting parameter between the two losses

which has been set to 10 in our work. We optimize LD and

LG together at each iteration and stop training via valida-

tion.

3.3. Training Data Composition

Here, we explain how we prepare the training data tu-

ple (Is,Pt, It) while training FE and RD with E-loss. Ini-

tially, we have the original image-palette dataset Dorig =
{(Ij ,Pj)|j = 1, ..., N}. We perform color augmentation

on each jth image-palette (Ij ,Pj) pair into Na number of

different image-palette pairs. Then, we denote the aug-

mented image set as Ij = {I(j,n)|n = 1, ..., Na} and the

corresponding augmented palette set as Pj = {P(j,n)|n =
1, ..., Na}. Within Ij ,Pj , we randomly sample two pairs,

the source pair (Is,Ps) and the target pair (It,Pt). A train-

ing data tuple is a source image Is, a target palette Pt, and a

target image It. We do not use the source palette Ps during

training unlike the previous palette matching methods [3, 5].

The total number of possible training data tuples (Is,Pt, It)
is Na ×Na ×N . In addition, the source pair and the target

pair can be identical. In this case, PaletteNet reconstructs

the input image with its palette like Auto-encoder model.

When it comes to training with Adv-loss, we additionally

sample (Io,Po) from Dorig. Thus, the training data tuple

to train G and D together is (Is,Pt, It, Io,Po). Training

also includes random horizontal flip of the images in the

probability of 0.5.

4. Experiments

4.1. Data Preparation and Color Augmentation

We generate the dataset using 1,611 image-palette pairs

scrapped from the Design-seeds.com [1] website. Since

we train PaletteNet to change a source image into a tar-

get image, we need a target ground truth image, which is

65

Figure 5. The Proposed Color Augmentation and Naive Hue-

shift method (a) the original image (b) the result of the proposed

color augmentation (c) the result of the naive hue-shift by +180.

Compared to (c), (b) alters the color concept only, retaining the

luminance. (c) distorts the luminance from the original image.

the different-colored version of the source image. How-

ever, a different-colored version of a specific image gen-

erally does not exist. Therefore, color augmentation is an

essential step to define the input and output of our network.

Color augmentation means altering channel-wise pixel val-

ues of an image in a certain color space, like HSV, RGB,

and LAB. We mainly use hue-shift in the HSV color space.

The naive color augmentation shifts the hue value of an im-

age between 1 and 360 in HSV. The problem is that hue-

shift causes a luminance distortion to the image. Since HSV

does not separate luminance as the characteristics of color,

the naive way causes the luminance distortion. Figure 5

(c) clearly shows that the naive hue-shift distorts luminance

from original image (a). Thus, we reinforce the naive hue-

shift algorithm with the LAB color space, which is known

to best express an image’s luminance:

RGB → LAB and cache L

RGB → HSV
hue−shift
−−−−−−−→ H∗SV → L∗A∗B∗

Final hue-shifted image: LA∗B∗.

(10)

The above procedure describes the proposed hue-shift algo-

rithm. The main idea is fixing the luminance of an orig-

inal image during color augmentation. As shown in Fig-

ure 5 (b), it successfully alters color concept only while

the less luminance distortion occurs than the naive hue-

shift algorithm. Fixing luminance is important because we

aim only to change the color concept. We assume that the

corresponding palette of the hue-shifted image is also hue-

shifted by the same amount from the palette of the original

image. We augmented each image-palette pair (Ij ,Pj) 18

times (step of 20 in 360) with the proposed color augmenta-

tion method. We split 1,611 image-palette pairs into 1,561

as the training set and 50 as the validation set, resulting in

28,098 training pairs and 900 validation pairs. Finally, we

resized the images into 288 × 432 to keep a constant input

size for the neural network.

4.2. Training and Architecture Details

We trained networks using NVIDIA GTX TitanX and

GTX 1080 GPUs. Because of the image resolution 288 ×
432 is relatively large compared to general image recogni-

tion models, we used a small mini-batch size of 12 at GTX

TitanX and 8 at GTX 1080 not to exceed GPU memory.

We used the Adam optimizer [8] while training G and D.

Most of the hyper-parameters are from DCGAN [10]. The

learning rate was set to 0.0002 and β1 as 0.5.

The values of LAB images range: L in [0, 100], a in

[-86.185, 98,254], and b in [-107.863, 94.482]. For better

input format, we normalized each channel to be the range

in [-1, 1] by linear transforms. We used a palettes in LAB

and normalized in the same way as above.

The most famous normalization is Batch Normaliza-

tion [7]. Applying Batch Normalization has been seemed

mandatory in recent deep neural network architectures. It

helps training the model faster by normalizing a whole

mini-batch and acting like a regularizer. However, some

of image generation tasks show that alternative normaliza-

tion, Instance Normalization (also called Contrast Normal-

ization) [13], enhances generated images. It was first pro-

posed in TextureNet [12] and reported enhanced styliza-

tion performance, even with a desaturated input images.

Instance Normalization performs normalization at each in-

stance of a mini-batch rather than throughout the mini-batch

as Batch Normalization. In our recolorization task, we want

each instance of mini-batch not interfered by different satu-

rations of the others. We used Instance Normalization as it

enhanced our recolorization significantly.

Empirically, the last layer as the convolution was better

at generalization on the validation set compared to the de-

convolution. Moreover, initializing FE without bias and RD

with bias were the best choice through the validation.

Because we aim to recoloring artwork, we set our input

size to H × W of PaletteNet very large as 432 × 288. We

have tested various architectures of D for stable learning.

Our final architecture of D is 2-strided 4× 4 fully convolu-

tional network of 4 layers. Thus, the output of D is binary

heat-map with a spatial size of H/16×W/16. Instance Nor-

malization and LeakyReLU follow each convolution layer

of D.

4.3. Palette Generalization

To evaluate the generalization performance of the pro-

posed method, we tested on the validation images set with

the randomly sampled target palettes. If the model is well

generalized, the output images are recolored according to

the color concept of the any arbitrary target palettes. Fig-

ure 6 shows the results of the generalization experiment.

Sometimes, the source image is monochromatic, while the

target palette is complementary as the first row in Figure 6.

Alternatively, the source image is variegated, and the target

66

(a) (b) (c)

Figure 6. The results of PaletteNet generalization on the randomly

sampled image-palette pair. (a) source image (c) target palette (b)

resulted output

palette is desaturated as the second row in Figure 6. Dif-

ferent characteristics between a source image and a target

palette do not happen while training, because source and

target image-palette pairs are color augmented and share

similar characteristics of the color distribution. Accord-

ingly, for the given Is, there are only Na training data tuples

(Is,Pt, It). However, our model can generalize even in

those random cases as shown in Figure 6 (c). In the first row

of the figure, PaletteNet recolors flowers with yellow and

blue, while the source image flowers were monochromatic

orange. In the second row of the figure, PaletteNet accepts

a desaturated palette and recolors the variegated source im-

age in a desaturated fashion. These new generated outputs

(c) in Figure 6 cannot be recolored by color augmentation,

which proves our proposed model learns the generalized re-

colorization process with a given palette.

(a) (b) (c) (d)

Figure 7. (a) Control on the 2nd color of the target palette and (b)

resulted output. (c) Control on the 5th color of the target palette

and (d) resulted output.

4.4. Palette Control

PaletteNet does not accept color hints for specific pixel

locations like [2]. The model must deduce where to re-

color with which color in the target palette. To discover

how the colors of palette affect the recoloring process, we

conducted an experiment which we control one color while

other colors in the palette are fixed on a given image. Fig-

ure 7 shows that the second color of the palette presumably

colors the overall tone of the flowers, while the fifth color of

the palette colors background leaves, while fixing the flower

bud in pink. These results also prove that PaletteNet is not

learning color augmentation relations but interprets the tar-

get palette and reflects on the recolored output.

4.5. Comparisons

In this section, we evaluated PaletteNet by comparing

with the previous color transfer function method [3] and

the human expert. As shown in Figure 8, (e) by PaletteNet

shows more realistic results compared to (d) by [3]. There

are several differences between [3] and PaletteNet. First,

[3] takes the source palette Ps, which ours does not need.

Second, [3] cannot accept a user-favored target palette ex-

plicitly, but the user must adjust the source palette interac-

67

(a) (b) (c) (d) (e)

Figure 8. Compare with the existing recolorization model. (a) source image (b) source palette (c) target palette (d) Chang et al. [3] (e)

Proposed method. Our method do not use the source palette (b). (b) is only used in method (d).

tively through the GUI. Each time an user adjust a color of

the palette, the other colors in the palette are altered in re-

sponse to calculate suitable color transform function. Palet-

teNet directly accepts any arbitrary target palette. Third, [3]

modifies the source image by a transfer function defined by

the association of the source palette and the altered palette.

Thus, the transfer function acts independently of pixel lo-

cations and image context but recolors the source image

globally. On the other hand, PaletteNet associates the target

palette and the image content feature and infers which pixel

to recolor with which color in a data-driven manner.

Because the recolorization setting between [3] and ours

differs, in Figure 8, we first applied [3] on the source im-

age (a) by adjusting the source palette (b) to the palette (c),

and the corresponding recolored outputs by color the color

transfer function are (d). In comparison with our method,

we used the pairs of the source image (a) and the palette

(c) as the target palette, and the corresponding recolored

outputs are (e). Our results (e) look more realistic com-

pared to the results of [3] (d). The color transfer function

method is vulnerable to a large-scaled adjustment of the

source palette. In addiction, defining the source palette and

adjusting it to the target palette require much user efforts

and affect recolorization performance. Our method mini-

mizes user effort by explicitly designating the target palette

and gains realistic results.

68

(a) (b) (c) (d) (e) (f)

Figure 9. Compare on the extreme target palette on a single image. (a) source image (b) source palette (c) target palette (d) Chang et al. [3]

(e) Proposed method (f) Human expert with Adobe Photoshop. (b) is only used in (d).

We tested more extreme target palettes on a single im-

age. In this case, professional designers also struggle to ad-

just an image for an extreme target palette. Recolorization

is a common task for designers to post-process color tone

of their work. To compare our model against a designer in

terms of time and quality, we asked a designer, who is an

expert with the commercial software Adobe Photoshop to

recolor a source image with a given target palette. We in-

cluded the Adobe expert’s results and compared them with

[3] and PaletteNet in Figure 9.

The easiest way to recolor an image using Photoshop is

to tweak the RGB color curve until one is satisfied with the

color tone of the image. However, tweaking the RGB curve

recolors an image globally like color transfer function with-

out considering the image’s content. Thus, the human ex-

pert additionally segmented objects like flowers, leaves, and

background as paths, creating layers for each object path

and recoloring them with a brush tool rather than tweaking

the color curve. This local content-aware recoloring pro-

cedure of the human expert costs lots of time but presents

the best recoloring results. PaletteNet performs similar pro-

cedure of human expert: extracting the content feature and

recoloring with target palette conditioned to the content fea-

ture. The human expert’s results are in Figure 9 (f). The

human expert took each 16, 17, and 20 minutes on each

result of 3 rows. Our proposed method in (e) again outper-

forms color transformation function method (d). PaletteNet

produces the plausible results compared to those of human

experts, and each takes less than a second.

5. Conclusion

We have proposed PaletteNet that automatically recolors

an image with a given target color palette. Contrary to re-

colorization by the existing method using a color transfer

function, PaletteNet extracts the content features and com-

bines them with the target palette to perform content-aware

recolorization in a data-driven way. As shown in the ex-

periments, it is practically meaningful that PaletteNet out-

performs the existing recolorization method and has an ex-

cellent ability comparable to human experts in generating

recolored images. Furthermore, PaletteNet could make a

realistic and plausible image in less than a second, while a

human expert using Adobe Photoshop takes 18 minutes on

average for the corresponding recoloring work.

Acknowledgement

This work was supported by Institute for Information

& communications Technology Promotion (IITP) grant

funded by the Korea government (MSIP) (2014-0-00059,

Development of Predictive Visual Intelligence Technology)

and the Brain Korea 21 Plus Project. We also appreci-

ate Hannah Park for the expert recolorization works with

Adobe Photoshop.

69

References

[1] Design seeds - for all who love color. http://

design-seeds.com/. Accessed: 2017-04-24.

[2] W. Casaca, M. Colnago, and L. G. Nonato. Interactive im-

age colorization using laplacian coordinates. In International

Conference on Computer Analysis of Images and Patterns,

pages 675–686. Springer, 2015.

[3] H. Chang, O. Fried, Y. Liu, S. DiVerdi, and A. Finkel-

stein. Palette-based photo recoloring. ACM Transactions

on Graphics, 34(4):139:1–139:11, 2015.

[4] I. Goodfellow, J. Pouget-Abadie, and M. Mirza. Generative

Adversarial Networks. arXiv preprint arXiv: . . . , pages 1–9,

2014.

[5] G. R. Greenfield and D. H. House. Image recoloring induced

by palette color associations. Journal of WSCG, 11(1):189—

-196, 2003.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. arXiv preprint arXiv:1512.03385,

2015.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015.

[8] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[9] G. R. Kuhn, M. M. Oliveira, and L. A. Fernandes. An ef-

ficient naturalness-preserving image-recoloring method for

dichromats. IEEE transactions on visualization and com-

puter graphics, 14(6):1747–1754, 2008.

[10] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[11] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In In-

ternational Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 234–241. Springer,

2015.

[12] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-

ture networks: Feed-forward synthesis of textures and styl-

ized images. arXiv preprint arXiv:1603.03417, 2016.

[13] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-

ization: The missing ingredient for fast stylization. arXiv

preprint arXiv:1607.08022, 2016.

70

http://design-seeds.com/
http://design-seeds.com/

