
Image Denoising via CNNs: An Adversarial Approach

Nithish Divakar R. Venkatesh Babu

Video Analytics Lab,

Dept. Computational and Data Sciences

Indian Institute of Science, Bangalore, India

Abstract

Is it possible to recover an image from its noisy version

using convolutional neural networks? This is an interesting

problem as convolutional layers are generally used as fea-

ture detectors for tasks like classification, segmentation and

object detection. We present a new CNN architecture for

blind image denoising which synergically combines three

architecture components, a multi-scale feature extraction

layer which helps in reducing the effect of noise on fea-

ture maps, an ℓp regularizer which helps in selecting only

the appropriate feature maps for the task of reconstruction,

and finally a three step training approach which leverages

adversarial training to give the final performance boost to

the model. The proposed model shows competitive denois-

ing performance when compared to the state-of-the-art ap-

proaches.

1. Introduction

Image denoising is a fundamental image processing

problem whose objective is to remove the noise while pre-

serving the original image structure. Traditional denoising

algorithms are given some information about the noise, but

the problem of blind image denoising involves computing

the denoised image from the noisy one without any knowl-

edge of the noise.

Convolutional Neural Networks(CNNs) have generally

been used for classification. They have a set of convolu-

tional layers(convolution followed by a non-linear function)

and eventually a few fully connected layers which help in

predicting the class.

But these networks have also found multiple other uses

as the output of these convolutional layers provide a rich

set of features from a seemingly nominal image. But what

if these features are not exactly from an actual image, but

something very close? Can we reconstruct the clean image

from features extracted from a noisy image?

This paper addresses how CNNs can be used for blind

image denoising. The problem does not fit into traditional

1x1 3x3 5x5 7x7 9x9

3x3

1x1

1x1

3x3

1x1

1x1

wxh conv layer

relu

sigmoid

regularizer

concatenation

hadamard
product

Figure 1. The proposed image denoising model

frameworks as described above since input to the network

is not clean images. They are noisy images and require the

network to gather enough features from this image so that a

noise-free version can be computed from them.

The proposed architecture is shown in Fig. 1. It includes

three main components (i) a set of filters that simultaneously

extracts features at multiple scales from the image. We call

these filters collectively as multi-scale feature extraction

layer (ii) a combination of filters which allow dampening

the features contaminated by noise and (iii) reconstruction

layers with filters that do not have any spatial resolution.

The architecture is explained in detail in Sec. 2.1.

The following are the major contributions of this paper.

• We propose a multi-scale adaptive CNN architecture

which gives a competitive performance to the state-of-

80

the-art image denoising approaches.

• A training regime which exploits clean images as well

as noisy images to get good feature maps for recon-

struction.

• An adversarial training procedure, which helps to im-

prove the denoiser performance further than the ℓ2 loss

would allow.

2. Proposed approach

The proposed denoising approach contains two main

components: (i) an image denoising model and (ii) a three

phase training procedure. In this section, we present a de-

tailed overview of both.

2.1. Architecture of the denoiser

Convolutional layers are traditionally used as feature de-

tectors for the classification task. But stacking multiple con-

volutional layers on top of each other gives the network an

inherent feature of abstracting details in deeper layers [7].

This property, although quite useful for classification and

other related tasks, is unsuitable for image denoising as the

finer details of the image need to be preserved for a good

reconstruction.

A naive solution might be to simply use deconvolu-

tions [25]. But this, in turn, imposes more burden on the

network to learn to reconstruct details from an abstract rep-

resentation of the image. Moreover, such a network requires

a large number of layers and hence is harder to train.

To circumvent this, we use two techniques.

1. Extract as many features as possible from the image in

the first layer itself.

2. Keep all filters of the deeper layers to be 1×1 in size to

avoid abstraction and blurring of fine image structures.

To extract all of the necessary features from the image,

simply having large number filters of the same size is not

enough. Inspired from inception layers of GoogLeNet [23],

we employ multiple sets of convolutional filters, each set

progressively having larger filter sizes, directly applied on

the image. The resulting activations from all these layers are

simply stacked together. We call the combination of these

filters multi-scale feature extraction layer.

The main difference of this layer from inception layer

is the absence of initial 1 × 1 convolutions. Inception lay-

ers are usually fed activation of previous layers and hence

receive multiple feature maps. In our case, these convolu-

tional layers operate directly over the input image and hence

do not require the initial 1 × 1 convolutions. We can say

multi-scale feature extraction layer is more similar to naive

inception layer [23].

1x1 3x3 5x5 7x7 9x9

multiscale feature extraction layer

Figure 2. Multi-scale feature extraction layer

Another difference is the number of output channels.

Unlike inception layers which have the same number of

output channels for each parallel paths, the conv-layers of

multi-scale feature extraction layer has a progressive num-

ber of output channels since larger filter sizes can extract

more information. For our experiments, we have fixed the

output channels to 32,40,48,56 and 64.

We avoid learning abstract features in the later layers of

our model by limiting expressivity. To achieve this we limit

the filter sizes of convolution layers to 1× 1.

This results in our model having less number of param-

eters and also avoids blurring the fine image structures.

Hence we are able to use a larger training dataset as op-

posed to many of the earlier works like [24, 19].

2.2. Three phase training

Simply training the model by feeding noisy images and

constraining the output to be close to the clean image can

cause the network to quickly converge to averaging out

noise. To circumvent this, we make use of the clean im-

ages by first teaching the model to simply reconstruct from

clean images and then to reconstruct from the noisy image.

The training process involves the following:

1. Clean-to-clean reconstruction Feed clean images to

the model and train it to reconstruct the same image

back.

2. Noisy-to-clean reconstruction Feed noisy images to

the model and train it to reconstruct the corresponding

clean image back.

3. Adversarial training Train the denoiser model using

an adversarial strategy to increase the denoising per-

formance.

Clean-to-clean reconstruction

In the first phase of training, we leverage the availability

of clean images to learn useful filters for image reconstruc-

tion.

The model is trained to reconstruct the clean image from

itself. The intent of this phase is to allow the model to

learn good features to reconstruct images. But to prevent

the model from simply collapsing to an identity function,

81

we apply a heavy dropout (p = 0.7) immediately after the

multi-scale feature extraction layer.

The middle three layers of the architecture in Fig. 1 are

provided to dampen the activations of the first layer. The

intuition is explained in the next training phase. Since the

intent of this phase is to learn features for reconstruction,

the skip connection over the middle three layers is short-

circuited, resulting in these layers not being part of training.

Essentially, we train a model of effective depth of 4 in this

phase.

Noisy-to-clean reconstruction The next stage is train-

ing the network to reconstruct clean images from noisy im-

ages. The dropout added in the previous training phase is

removed and the parameters of the multi-scale feature ex-

traction layer are frozen. But now, since the images are

noisy, the quality of extracted feature maps is adversely af-

fected for those learnt filters which are most sensitive to

noise. Feature maps of those filters, which are invariant to

noise remains the same. To aid in quick adjustment to these

good and bad feature maps (in the context of denoising), we

provide a few extra layers that allow to selectively reduce

the effect of bad feature maps of the multi-scale feature ex-

traction layer.

These layers eventually output a value between 0 and

1 for each pixel position, when fed the activations of the

multi-scale feature extraction layer. These values are then

point-wise multiplied (Hadamard multiplication between

tensors) back to the feature maps. The features of the multi-

scale feature extraction layer as result gets rescaled accord-

ing to the value. A value close to 0 completely diminishes

the feature map while a value of 1 simply allows it to pass

unmodified. All the layers of this stage have 240 output

channels.

We also impose an lp regularizer on the 5th and 6th lay-

ers (See Fig. 1). These layers have filters of 1×1 and hence

imposing a sparsity preserving regularizer will lead to the

model selecting only a few connections between the layers.

This is an automated way of selecting only a few good ac-

tivation maps to reconstruct the image. The same idea was

implemented in [11] by only allowing a randomly chosen 8
connections to the previous layer. We have found the value

of p = 0.1 to be satisfactory. Too low a value results in ex-

ploding loss function and too high a value results in model

simply collapsing to pure averaging. Layers of this stage

have 128 output channels except for the last layer which

has only 1.

Table 1 shows the denoising performances of the model

at the end of this training phase. As can be inferred, the

denoising performance is adequate, but far from the state-

of-the-art results. Fig. 3 shows some examples of denoised

images at this stage of training for various noise levels.

We can see that the model just resorts to averaging all

the pixel values in presence of heavy texture and high noise

Table 1. Denoising results after the end of noisy-to-clean training

phase on test set.

Sigma 10 15 20 25

PSNR 32.37 30.68 29.37 27.93

Figure 3. Denoising result after phase 2. The columns respectively

show clean images, noisy images and reconstructed images.

level. This effect can be attributed to the averaging effect of

ℓ2 loss. For a detailed discussion, refer to [15]. To circum-

vent this effect, we need a better loss function that preserves

natural image features.

Adversarial training Adversarial training of neural net-

works was introduced by Goodfellow et al. in [8]. We

briefly describe it here.

Adversarial training is a method to train a generative net-

work G to generate samples from some real data x ∼ pdata.

Generators are fed input noise variables z having distribu-

tion pZ and they are trained to learn the mapping to the data

space. The distribution of the generator model is given by

pg ∼ G(z; θg) (1)

Here, θg are the parameters of the generator network. While

training the generator, we essentially want to maximize the

probability of samples it produces to match the data. Hence

we want to maximise pdata(G(z; θg)).
A discriminator network D on the other hand simply

take a data sample x as input and outputs the probability

82

D(x, θd) of the sample coming from the distribution pdata
rather than it being generated by the generator. θd is the

parameter of the discriminator.

Now, the generator wants to generate samples from data

distribution. So it must train its parameters so that the gen-

erated samples can fool the discriminator. i.e

min
θg

Ez∼pZ
[log (1−D(G(z)))] (2)

The discriminator, on the other hand, must learn to tell

generated and real samples apart. So it must maximize the

probability value assigned to actual data samples and mini-

mize the probability value assigned to generated samples.

max
θd

Ex∼pdata
[logD(x)] + Ez∼pZ

[log (1−D(G(z)))]

(3)

Both the generator and the discriminator networks are

trained alternatively so that they try to fool each other. The

whole process converges when generator eventually learns

to generate samples from pdata
We use adversarial training in a slightly modified way.

Instead of having a generator which maps from input noise

to samples to a data distribution, we have a ‘generator’ that

takes a noisy image and ‘generates’ the corresponding clean

image. This network is essentially a denoiser.

Now the discriminator network has to discriminate be-

tween clean images and denoised images. The adversarial

network is trained such as to find optimum parameters sat-

isfying

θ∗g , θ
∗

d = min
θg

max
θd

ladv (4)

Where the loss function is given by

ladv = logD(Ic) + log(1−D(G(In))) (5)

Here, Ic is the clean image and In is the noisy image

Eq. (4) corresponds to using a binary cross entropy loss

on the output of the discriminator that is trained to tell

whether the input belongs to one of the two class; true sam-

ples or generated samples.

Denoiser

Discriminator
Clean

or
denoised?

Figure 4. Adversarial training model

But this model allows the generator/denoiser to trans-

form noisy image to any image which the discriminator will

classify as a true sample. But for correct denoising, we need

the output of denoiser to be very close to the clean image.

So we restrict the output of the denoiser to be close to clean

image by imposing an extra loss term,

ldeno =
‖Id − Ic‖

2

2

|Ic|
(6)

Id = G(In) is the denoised image and |Ic| is the size of

the image. This is essentially mean squared loss which pe-

nalises any deviation from the original data (here Ic).

Several modifications of adversarial training has been

proposed in the literature [18, 20], but the idea to use adver-

sarial training for other tasks other than image generation

is not new [4, 15, 13]. But to the best of our knowledge,

ours is the first work that uses adversarial training for blind

image denoising.

We have used VGG19 [22] model as the discriminator in

our experiments. The fully connected layers were replaced

by three new layers of size 2048, 1024 and 2 initialized with

random weights. Then, these layers are fine-tuned to distin-

guish between the denoiser output and the clean image.

In VGG19 model, the feature detectors (convolu-

tional layers) are kept unmodified throughout the train-

ing and only the fully connected layers are allowed to be

trained/modified. The discriminator is pre-trained on the

denoiser output and the clean image for 10 epochs which

gave a cold start accuracy of about 95%.

After the noisy-to-clean training phase, the denoiser

model can already denoise images to some extent. Since

adversarial training is very sensitive to the balance of ability

of generator and discriminator, the loss function is modified

to accommodate this. Essentially, the loss function is the

weighted sum of ladv and ldeno as follows.

loss = ldeno +

(

1 + st

T

)

ladv (7)

Where s = 0.99 is a damping factor , t is the iteration

number and T is total number of iterations. This ensures

that the adversarial loss is weighted less in the beginning

of this phase, but as the training progresses, its contribu-

tion to loss increases. This weighing scheme allows the dis-

criminator to slowly learn the difference between denoised

image and clean image in the initial iterations. Without

this weighing scheme, we have observed that the denoiser

model quickly starts to generate images to confuse the dis-

criminator rather than trying to produce noise free images.

Essentially, it allows the denoiser to strictly stick to denois-

ing rather than trying prematurely to fool the discriminator.

We have observed that keeping accuracy of discrimina-

tor above 95% helps the model learn faster and hence for

ensuring this, in each iteration, the discriminator is shown

the data twice. We have used Adam optimizer [12] for both

networks and set the learning rate of the adversarial network

to be 10−5 and the discriminator network to be 10−6. The

83

Algorithm 1 Steps for training the adversarial network. X

is a set of clean images in the dataset

1: procedure ADVERSARIAL TRAINING(X)

2: while t < T do

3: x = minibatch(X)
4: x̂ = addnoise(x)
5: y = G(x̂)
6: Train discriminator so that all of x is classified

as true samples and all of y is classified as false

samples.
7: Train generator/denoiser so that D(G(x̂)) al-

ways evaluates to true.
8: Update loss function according to Eq. (7)

procedure for adversarial training is enumerated in Algo-

rithm 1.

Connection of adversarial training to patch prior
model

Adversarial training is motivated by the fact that the final

loss function that our adversarial model minimizes is very

similar to the loss function derived from patch prior models

[19, 21, 27].

The patch prior model for denoising is given by

p(M(In)|In) =
p(In|M(In))p(M(In))

Z
(8)

where M is the denoiser model and M(In) is the output of

the model for a noisy image In. Z is a normalizing factor.

Assuming Gaussian noise and taking log likelihood, the

loss function is given by

er[M(In), In] = ‖M(In)− In‖
2

2
−

1

C
log p(M(In))

(9)

where C is a constant resulting from noise parameters.

In the adversarial model, if we use binary cross-entropy

as the loss function for the discriminator and constraint the

output of denoiser to be close to the clean image, the model

then is optimized over a similar loss function. The only dif-

ference being that the output of the network is constrained

to be close to the clean image Ic other than In. This differ-

ence is justified as the patch prior models want the output to

be close in structure to the actual image, but it doesn’t have

the clean patch.

3. Experiments

In this section, we present the observations made during

the training and evaluation of our model for denoising.

3.1. Training and testing Data

Training Data: The training data consists of Images

from MIT Indoor dataset [17] and Places dataset [26].

These two datasets were chosen because they contain im-

ages of two different modalities; indoor scenes and out-

door scenes. Together, these two datasets have provided

our model with good examples of most possible textures

and patterns available in real world data.

For preparing training data, we have randomly chosen

5000 images from each of these datasets. A random 64×64
crop is extracted from each of the images. Then the pixels

are rescaled to the range [0, 1].
During the training process, the noisy images are gen-

erated by adding a random level of Gaussian noise to the

image. The model is not given any information about the

amount of noise added. This has helped our model to be a

blind denoiser.

Test Images: The model performances are evaluated on

the test set used in [24]. This set of 300 images contains

100 images from BSDS300 [14] and 200 images from Pas-

calVOC [6]. These set of images are a super-set of the test

set used in [19, 21, 27] and was first used in [24]. Since the

denoiser network is fully convolutional, images need not be

re-sized or cropped during testing. They can simply be fed

to the model and it will reconstruct the denoised image.

Validation set: We have used the 7 standard images used

in [16] as the validation set during training procedures.

During training, the model is evaluated for denoising using

each of these images for multiple noise levels. All the de-

noising performances of the model during training has been

plotted by the average performance over these images.

3.2. Denoising performance

Peak Signal-to-Noise Ratio (PSNR) is a common mea-

sure to gauge denoising performance. PSNR measures dis-

similarity between two images and hence to measure de-

noising performance, we simply measure the PSNR value

between the denoised image and the original, noise free im-

age. For a clean image Ic and a denoised image Id with

range of pixel values from 0 to 255, PSNR is computed as

PSNR(Ic, Id) = 10 log
10

(

2552

mse(Ic, Id)

)

(10)

mse(Ic, Id) =
1

|Ic|
‖Ic − Id‖

2

2
(11)

|Ic| → size of the image (12)

During the initial phase of adversarial training, the dis-

criminator accuracy is comparatively lower because the dis-

criminator cannot classify real and denoised images. But as

training progresses, the discriminator gets better at this task.

The generator (denoiser) now under the influence of adver-

sarial loss, slowly begins to produce natural looking images

84

0 100 200 300 400 500 600 700 800

itaration x 10

24

25

26

27

28

29

30

31

32

33

P
S
N
R

10.0

15.0

20.0

25.0

Figure 5. Denoising performance of the denoiser model on vali-

dation set during adversarial training. The model performance is

evaluated every 10 iteration on each noise level on all 7 images of

the validation set. The plotted values are average of all 7 PSNR’s

0 100 200 300 400 500 600 700 800 900

itaration x 10

10-3

10-2

10-1

Adversarial Loss

Figure 6. Trend of evolution of Adversarial loss during training

iterations. The values are plotted every 10 iterations.

and we see a decrease in the training loss. The adversar-

ial loss value vs iteration number is plotted in Fig 6. Fig 5

shows the average PSNR values over the validation set for

each of the noise levels.

Table 2 gives the performance of our model against other

denoising algorithms. A point to be noted here is that except

[24] and our method, all the other methods are not blind de-

noising techniques. They are provided standard deviation of

the added Gaussian noise and the algorithm adapts to these

values accordingly.

Table 2. PSNR values of denoised images on test set introduced

by [24]. Only DCGRFN[24] and our method are blind denoising

approaches. Other methods are explicitly given standard deviation

of the additive gaussian noise.

Sigma 10 15 20 25

BM3D [3] 33.38 31.09 29.53 28.36

WNNM [9] 33.57 31.28 29.7 28.50

EPLL [27] 33.32 31.06 29.52 28.34

CSF [21] - - - 28.43

DCGRFN [24] 33.56 31.35 29.84 28.67

Ours 33.41 31.17 29.59 28.49

4. Related Work

The corrupting process that results in a noisy image can

be seen as

In = Ic +N (13)

where N is the noise and Ic is the clean image(patch).

If the corrupting noise is uncorrelated, and we have a

large number of corrupted samples of the same patch, av-

eraging them all, would give us a very good approximation

to the clean patch. But a naive application of this idea is

limited by two constraints.

1. Large number corrupted versions of same patches are

not available.

2. We are limited to working with only noisy patches.

But natural images are full of repeating patterns and tex-

tures. The second constraint limits identifying the patterns

because high similarity might as well be induced by noise

or vice-versa. Solutions to solve these problems have given

some of the classical works in denoising.

If we ignore the fact that similarity measure might give

incorrect results for noisy patches, then the averaging step

has to compensate. A simple Euclidean distance in the lo-

cal neighborhood will give a set of noisy patches that are

similar to each other.

Non-local means algorithm [1] modifies the averaging

step to be a weighted averaging, where the weights are given

by the similarity measure. BM3D [3] uses collaborative fil-

tering of all the similar patches to achieve superior results.

Weighted Nuclear Norm Minimization [9] exploits the fact

that set of similar patches would be of low rank if they were

noise free. Simply solving for a set which gives a lower

weighted nuclear norm removes the noise from the data.

Assuming prior on image patches has lead to denoising

methods which does not involve finding similar patches at

all. K-SVD [5] method applies a sparse dictionary model

to noisy patches which essentially remove the noise from

85

Figure 7. Denoising results of our model. Image in the left of each pair shows the noisy image and the image in the right shows the denoised

image.

them. The sparse dictionary used in this method was

‘learned’ out of the large corpus of natural or clean images.

The first attempt to learn a generic image prior was given

by Product-of-Experts [10] which was later extended to

image denoising and inpainting by Field-of-Experts [19].

Both methods involve learning a prior from a generic im-

age database and then using the prior for iterating towards a

noise free patch. Minimizing the expected Patch Log Like-

lihood [27] also used a learned Gaussian mixture prior.

But with deep learning techniques, new methods are

devised which can learn image prior implicitly as model

parameters and simply compute the noise free patch. A

network resembling fully convolutional network was used

in [11] to get a denoiser model. In [2], a 5 layer fully con-

nected network gave state-of-the-art performance. But both

these models require different parameters to be specifically

trained for each noise level.

In [24], the authors have used an end-to-end trainable

network which uses Gaussian conditional random field.

This model uses successive steps of denoising and noise pa-

rameter estimation to eventually give a model which can do

blind denoising.

In contrast to the existing works, our model is simple and

easy to train. It essentially results in a set of convolution and

non-linearity and hence using it for denoising is extremely

simple. Also, our model is not applied on patches. It takes

as input the entire image and simply computes the denoised

image. This allows it to be fast in comparison. The model is

trained on varying noise levels together and hence it allows

our model to be a blind denoiser which is trained end-to-

end. There is no parameter estimation and the model is ca-

pable of automatically adjusting to the required noise level

to give the best output.

5. Conclusion

In this work, we addressed whether Convolutional Neu-

ral Networks can solve the problem of image denoising.

We have proposed a simple architecture which gives very

competitive denoising results. The architecture contains

three unique parts. A multi-scale feature extraction layers,

damping layers, and reconstruction layers.

We have also proposed a three stage training procedure

to train the model. In the first stage, the multi-scale feature

extraction layer is trained to extract features for image re-

construction by using clean images. In the second stage, the

damping layers are trained to diminish activations of noise

variant filters.

In the final stage, we have successfully adopted adver-

sarial training to this framework with a modified adversarial

loss which greatly improves the performance of the denoiser

over the limit imposed by ℓ2 loss. The proposed denoiser, a

fully convolutional neural network, is a simple model with

fewer parameters. The model denoises the given noisy im-

age in a single pass without any need for patch extraction

step and hence is computationally very efficient.

86

6. Acknowledgement

This work was supported by ISRO-IISc Space Technol-
ogy Cell, Indian Institute of Science, Bangalore (Project
No: ISTC0338).

References

[1] A. Buades, B. Coll, and J.-M. Morel. A review of image

denoising algorithms, with a new one. Multiscale Modeling

& Simulation, 4(2):490–530, 2005.

[2] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denois-

ing: Can plain neural networks compete with bm3d? In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2392–2399, 2012.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Bm3d

image denoising with shape-adaptive principal component

analysis. In Signal Processing with Adaptive Sparse Struc-

tured Representations, 2009.

[4] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-

tive image models using a laplacian pyramid of adversarial

networks. In Advances in neural information processing sys-

tems, pages 1486–1494, 2015.

[5] M. Elad and M. Aharon. Image denoising via sparse and

redundant representations over learned dictionaries. IEEE

Transactions on Image processing, 15(12):3736–3745, 2006.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes Chal-

lenge 2011 (VOC2011) Results.

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm

of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in Neural Information

Processing Systems, pages 2672–2680, 2014.

[9] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear

norm minimization with application to image denoising. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2862–2869, 2014.

[10] G. E. Hinton. Products of experts. In Artificial Neural Net-

works, 1999. ICANN 99. Ninth International Conference on

(Conf. Publ. No. 470), volume 1, pages 1–6. IET, 1999.

[11] V. Jain and S. Seung. Natural image denoising with convo-

lutional networks. In Advances in Neural Information Pro-

cessing Systems 21, pages 769–776. Curran Associates, Inc.,

2009.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014.

[13] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Aitken, A. Te-

jani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single im-

age super-resolution using a generative adversarial network.

arXiv preprint arXiv:1609.04802, 2016.

[14] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-

ume 2, pages 416–423, July 2001.

[15] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale

video prediction beyond mean square error. arXiv preprint

arXiv:1511.05440, 2015.

[16] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli.

Image denoising using scale mixtures of gaussians in the

wavelet domain. IEEE Transactions on Image processing,

12(11):1338–1351, 2003.

[17] A. Quattoni and A. Torralba. Eq. indoor scenes. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 413–420. IEEE, 2009.

[18] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[19] S. Roth and M. J. Black. Fields of experts: A framework for

learning image priors. In IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 860–867. IEEE, 2005.

[20] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung,

A. Radford, and X. Chen. Improved techniques for training

gans. CoRR, abs/1606.03498, 2016.

[21] U. Schmidt and S. Roth. Shrinkage fields for effective im-

age restoration. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2774–

2781, 2014.

[22] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2015.

[24] R. Vemulapalli, O. Tuzel, and M.-Y. Liu. Deep gaussian

conditional random field network: A model-based deep net-

work for discriminative denoising. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2016.

[25] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In Computer Vision - ECCV 2014 -

13th European Conference, Zurich, Switzerland, September

6-12, 2014, Proceedings, Part I, pages 818–833, 2014.

[26] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places

database. In Advances in neural information processing sys-

tems, pages 487–495, 2014.

[27] D. Zoran and Y. Weiss. From learning models of natural

image patches to whole image restoration. In 2011 Inter-

national Conference on Computer Vision, pages 479–486.

IEEE, 2011.

87

