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Abstract

Example-based single image super-resolution (SISR)
methods use external training datasets and have recently
attracted a lot of interest. Self-example based SISR methods
exploit redundant non-local self-similar patterns in natu-
ral images and because of that are more able to adapt to
the image at hand to generate high quality super-resolved
images. In this paper, we propose to combine the advan-
tages of example-based SISR and self-example based SISR.
A novel hierarchical random forests based super-resolution
(SRHRF) method is proposed to learn statistical priors from
external training images. Each layer of random forests re-
duce the estimation error due to variance by aggregating
prediction models from multiple decision trees. The hier-
archical structure further boosts the performance by push-
ing the estimation error due to bias towards zero. In or-
der to further adaptively improve the super-resolved im-
age, a self-example random forests (SERF) is learned from
an image pyramid pair constructed from the down-sampled
SRHRF generated result. Extensive numerical results show
that the SRHRF method enhanced using SERF (SRHRF+)
achieves the state-of-the-art performance on natural images
and yields substantially superior performance for image
with rich self-similar patterns.

1. Introduction

Image super-resolution (SR) is an interesting and clas-
sical problem in computer vision and signal processing. It
has many applications ranging from face super-resolution to
hyper-spectral imaging. The objective is to recover a sharp
and natural-looking high resolution (HR) image from one or
more blurred low resolution (LR) images. In particular, sin-
gle image super-resolution (SISR) aims to restore the HR
image from a single input LR image. This is an ill-posed
problem as the size of LR observation is much smaller than
the desired HR output. A variety of priors have been pro-
posed to regularize the problem. Example-based SR meth-
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(c) SRHRF (32.92dB)

(d) SRHRF+ (35.22dB)

Figure 1: Our proposed SR methods, SRHRF and SRHRF+,
compares with the state-of-the-art self-example based
method [8] (upscaling factor is 2).

ods [25, 21, 4] learn statistical priors to model the corre-
spondences between LR patches and HR patches from an
external training dataset. Self-example based approaches
[7, 8, 24] make use of the LR image itself as training data.
In order to take advantage of the non-local similarity prop-
erty of natural images, these methods adaptively enhance
the super-resolved image using affine or perspective trans-
formed similar patches across scales.

In this paper, we propose to combine the merit of
the example-based approaches with the adaptive capabil-
ity of the self-example based approaches. A novel SR hi-
erarchical random forests (SRHRF) method is first used
to learn statistical priors from external training images.
This is followed by a self-example algorithm which fur-
ther exploit useful information from a pyramid of internal
training images super-resolved by SRHRF. The proposed
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SRHRF method combines the strength of the bagging (a.k.a
Bootstrap Aggregating) strategy in random forests together
with the boosting idea. In such way, SRHRF can optimize
SR estimation error in terms of both variance and bias. More
specifically, SRHRF can reduce the variance errors with
random forests, and can meanwhile decrease the estimation
bias via cascaded forests.

Promising SR results have been reported in the hierar-
chical decision trees (SRHDT) method [10] using boosted
decision trees to reduce the estimation bias. At each stage in
their work, a single decision tree is first trained and then ex-
panded into a decision forest consisting of 8 decision trees.
Apart from one trained decision tree, there are 7 other non-
trained decision trees constructed by manipulating the re-
gression models on each leaf node of the trained one. How-
ever, there is only around 0.1 dB gain through the aggre-
gation of regression models in [10]. We conjecture that it
is because the decision trees they learned are highly stable
(with low diversity). Since diversity among decision trees
is essential, we propose to use hierarchical random forests,
rather than cascaded decision trees, to consistently refine
the super-resolved image. By using the bagging strategy as
well as limiting the minimum number of samples on leaf
nodes, we can obtain random forests with highly diversified
decision trees. In such way, the proposed SRHRF method
can acquire significant gain through the fusion model idea
which expands the number of decision trees in original
learned random forests by a factor 8.

Our self-example enhanced algorithm (SRHRF+) makes
further improvement on SR quality by exploiting image in-
ternal statistics (see Figure 1 for example). It takes a mid-
dle resolution (MR) image provided by SRHRF as input
and applies an adaptive random forests, be refereed as self-
example random forests (SERF), for further enhancement.
The SERF is trained using LR and HR feature pairs ex-
tracted from an image pyramid pair which is constructed
using the down-sampled versions of the MR image. Self-
example SR is especially effective for the images with a
large number of patches with similar patterns. Numerical re-
sults show that the proposed SRHRF already achieves state-
of-the-art SISR performance, and SRHRF+ can further im-
prove SRHRF up to 0.7 dB on average depending on the
image content.

2. Related Work
2.1. Example-based Super-Resolution

Example-based SR mainly refers to methods where the
learning is achieved using external datasets. Various mod-
els have been developed to capture the complex relationship
between LR patches and HR patches. Chang et al. [3] pro-
posed a neighbor embedding SR algorithm based on man-
ifold learning. Sparse coding based algorithms [26, 25] as-

sume that an LR patch and its corresponding HR patch share
the same sparse code over a coupled LR and HR dictio-
naries. Kim and Kwon [14] proposed to learn a non-linear
mapping using kernel ridge regression for SISR. The idea of
“first-classification-then-regression” starts from the simple
functions (SF) method proposed by Yang and Yang [23] and
anchored neighbor regression (ANR) method proposed by
Timofte et al. [20]. SF method [24] classifies the LR patch
space using K-means clustering and learns a linear regres-
sion for each cluster to map LR patches belonging to this
cluster to HR patch space. ANR method [20, 21] instead
performs LR patch classification by treating each atom in a
sparse dictionary as an anchoring point and finding a nearest
neighbor atom for each input LR patch, and applies a ridge
regression for HR patch estimation at each class. With a
hierarchical search structure during testing, random forests
[11,9, 17, 16] have been applied for fast and high quality
image upscaling. SR hierarchical decision trees (SRHDT)
method [10] cascades multiple decision trees to boost the
performance of a single layer decision tree or simulated
random forests. Recently, deep learning based approaches
[4, 5, 12, 13] utilize deep learning techniques to learn a neu-
ral network for resolution enhancement and achieve state-
of-the-art performance.

2.2. Self-Example Based Super-Resolution

With the rapid development of example-based SR, learn-
ing LR-HR patch correspondences from external dataset
seems to be the ideal solution to the SISR problem. How-
ever, the redundant non-local similar patches within the in-
put LR image or enhanced MR image are valuable sources
of further information to restore the missing high frequency
details. Self-example SR based methods [7, 6, 1, 8, 19, 24,

], which do not rely on external dataset, are mainly based
on the fact that natural images contain a large number of
repetitive structures within and across different scales. Glas-
ner et al. [7] exploited the patch redundancy across scales
and proposed a unified framework which combines the idea
of classical multi-frame SR and example-based SR. Non-
locally centralized sparse representation method [6] mod-
els the sparse coding noise as a Laplacian distribution and
searches non-local similar patches to obtain a better estima-
tion of the sparse coding. Bevilacqua et al. [ 1] built a double
image pyramid using the LR input image through which a
linear mapping is learned for each LR patch. Huang et al.
[8] exploited transformed self-examplar patches and further
expanded the internal patch search space. ANR based self-
example method [19] applies the down-sampled versions of
the input image and their rotated and flipped images to gen-
erate internal training data and shows better performance
compared to the A+ (Adaptive ANR) method [21] which
uses external training images. The finite rate of innovation
based SISR (FRESH) method [22] enhances the image res-
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olution line by line and further improves the quality using
self-learning. The advantage of these self-example based
approaches [7, 6, 1, 8, 19, 24, 22] is that they exploit repet-
itive structure and can adapt to the characteristics of the in-
put image. However, they need longer processing time as
on-line learning is required.

3. Super-Resolution via Hierarchical Random
Forests

SR random forests (SRRF) [9, 17, 16] is a fast and ef-
fective SISR algorithm which learns from external training
images. It exploits the property of random forests [2] to re-
duce error induced by estimation variance by averaging the
results from multiple decorrelated decision trees.

From a mathematical point of view, SISR which aims to
predict an HR image Iy from the given LR image I}, can
be considered as a mapping f(-) between I, and I such
that Iy = f(I1) + €. Here € is the estimation error which
mainly consists of two error components, i.e. variance error
and bias error. Random forests can decrease the variance er-
ror by averaging the predictions from each decision tree, but
retains the bias error. In order to jointly optimize the estima-
tion in terms of both variance and bias error, we combine the
bagging strategy together with the boosting strategy. The
proposed SR via hierarchical random forests method con-
sists of multiple layers of random forests. In each layer, the
decision trees are aggregated to reduce the estimation error
due to variance, and meanwhile the hierarchical structure
consistently lowers down the estimation error due to bias.

3.1. Random Forests for SR

We begin with a brief review on the super-resolution
random forests. For a detailed description, please refer to
[11,9, 17, 16]. Random forests F are an ensemble of mul-
tiple decision trees {7;}7_,. A decision tree 7; has non-
leaf nodes and leaf nodes. Each non-leaf node has two child
nodes and a binary split parameter. A binary split function
divides the input feature space into two non-overlapping
parts. Through non-leaf nodes, the whole input feature
space has been divided into small non-overlapping parti-
tions which correspond to leaf nodes. As each leaf node
only covers a small part of the input feature space, a sim-
ple model is able to well approximate the mapping between
input feature space and output feature space. We control the
minimum number of samples V,,;,, to construct a leaf node
and use the bagging strategy to increase the diversity among
decision trees in a random forests.

For example-based SISR algorithms, the training data
are LR and HR data pairs extracted from correspond-
ing locations at LR and HR training images, respectively.
Let us denote the N training LR and HR data pairs as
{(l,, hy) }2 | with the LR feature I,, € RP~ and the HR

feature h,, € RP# where Dy, and Dy is the dimension of
the LR and HR feature, respectively.

During training, a decision tree’s root node (the first non-
leaf node) is initiated with a subset training data Sy =
{(I, hn)}X5, containing N, pairs of data (N, < N). At
each node, a binary split function associated with binary
split parameters @ = {p, ¢, 7} will compare two feature val-
ues on the LR feature [, i.e. I(p) and l(q), with a threshold
7 and will return either O or 1:

b, 6) - {1 if Up) <Ua)+T, )

0 otherwise.

If the binary split function b(l, ) returns 1, the training
data pair (I, h) at this node will be distributed to its left child
node, otherwise to its right child node. Each non-leaf node
tries to find the best binary split parameter from a pool of
randomly generated binary split parameters @ = {0} X ..

At anode j, a linear regression model C is learned from the
training data pairs:

C = argmin||[H — CL||; + \[|C][3, 2

where L and H is respectively the matrix containing all LR
and HR patch features at node j , and A is the regularization
parameter.

The ridge regression in Eqn. (2) has a closed form solu-
tion C = HL"(LL" + \I)~'. The reconstruction error
of training data .S is defined as:

IS|
1
B(S) =g > Ik — CLI3, 3)

n=1

where |S| is the cardinality of .S, and C is the learned re-
gression model.

All the non-leaf nodes find the best binary split which
achieves the highest information gain and divides the cur-
rent training data S into two non-overlapping groups ST
and ST. The information gain (S, ;) for training data S
and binary split parameter 8, € @ is defined as:

5"

T BT @

ne{L,R}

When the number of training data pairs at a non-leaf
node is smaller than N,,,;,, or the decision tree reaches the
maximum depth £, this non-leaf node will become a leaf
node and all of its training data will be applied to learn a
linear regression model C' as in Eqn.(2).

During testing, LR feature vectors are extracted from
overlapping patches on the LR image and put into each deci-
sion tree. According to the result of the binary split function
at each non-leaf node (0 or 1), the LR feature vectors will
be mapped into one of the leaf node. The reconstructed HR
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Figure 2: Flowchart of the proposed image super-resolution via hierarchical random forests method.

feature h™ is obtained by multiplying the LR feature vector
l with the averaged linear regression model retrieved from
all decision trees:

R 1 o
h :(Tth)l. (5)
t=1

In [10], regression models from 8 relevant leaf nodes of a
decision tree are fused to further reduce the estimation error.
By combining 8§ regression models from each decision tree,
we could gather 8 times more regression models for aggre-
gation without extra training efforts. The additional testing
complexity is small and comes from retrieving relevant leaf
nodes and additions between regression models. We take
the advantage of the fusion model idea and retrieve 81 re-
gression models from random forests with 1" decision trees.
We denote our method as SR random forests with fusion
model (SRRFf). In SRRFf, a regression model from a leaf
node is transformed into C™ as in [10], and are combined
together to reconstruct the HR feature h' as:

R 1 - M
h :(872(,1 A (6)
t=1

As patches overlap with each other, an HR pixel value is
the averaged pixel value from all the overlapping patches.

3.2. Hierarchical Random Forests for SR

When the random forests size T becomes large, increas-
ing the number of decision trees will not lead to significant
further improvement of the super-resolved images. It can
be interpreted as the estimation error due to variance has al-
ready been minimized. In order to further reduce the bias
in prediction, we propose the hierarchical random forests
(SRHREF).

Flowchart of the proposed SRHRF method is shown in
Figure 1. A hierarchical random forests H x consists of F’
layers of cascaded random forests {F}_,. The (n + 1)
layer random forests F,, 1 make improvement on the basis
of the super-resolved image through the hierarchical ran-
dom forests {F f}?=1- LR patch features are extracted from

the image enhanced by the previous layer, and fed into the
random forests of this layer. All 8T retrieved regression
models from leaf nodes are averaged to form a more ro-
bust regression model. Multiplying the aggregated regres-
sion model with the LR feature vector gives the predicted
HR patch feature. The estimated HR image is formed by
patch overlapping.

The hierarchical random forests is trained layer by layer.
The training LR images for the n'" layer of random forests
are the output of the hierarchical random forests for image
resolution enhancement up to level n — 1. For the first layer
of random forests, the training LR image is up-sampled by
bi-cubic interpolation and enhanced by iterative back pro-
jection (BP).

4. Self-Example Random Forests

In this section, we further improve the SR quality by ex-
ploiting the internal statistics within the input image. Our
self-example enhanced SRHRF method is named SRHRF+.
SRHRF+ is effective especially for those images with a
large number of similar patches. Once SRHRF has gener-
ated a high quality super-resolved image I from the input
LR image I';, we make use of a pyramid of internal training
images to explore the non-local similarity property.

The internal statistics can be exploited from an image
pyramid pair Py = {IA;{S}ZV:‘H and Pr, = {IAZS}fV:dl which
simulates the ground truth HR images and the SRHRF
super-resolved images. The image pyramid Py corresponds
to N, simulated HR images with decreasing resolutions by

a scale factor 0.98 (for example, I Z is obtained by down-

sampling I ;I by a factor 0.98). For SR with upscaling fac-
tor s, the images in Py, are obtained by down-sampling
images in Py by a factor s and then enhancing them by
SRHRE. To well model the correspondences between the
desired HR image Iy and I, the simulated HR images
should be as close to Iy as possible. Furthermore, the im-
age pyramids should be able to provide sufficient number
of reference patch pairs. For most self-example based meth-
ods [24, 1, 8, 19], the simulated HR images are generated
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Figure 3: Self-example random forests learning from the
image pyramid pair constructed from the SRHRF super-
resolved image.

by down-sampling the input LR image I ;. However, these
simulated HR images are too small to have faithful similar
structures and be able to generate enough number of train-
ing samples, especially for large upscaling factors.

As shown in Figure 3, with an initial image Iy super-
resolved by SRHREF, the largest simulated HR image I }q
is obtained by down-sampling Iy by a factor s;. Here
sq ranges from [1/s,1) for SR with upscaling factor s,
e.g. for x2 SR, s, can range from [1/2,1). Intuitively, the
higher the quality of I we can get from a SR algorithm,
the larger the s4 can be used to generate a natural-looking
down-sampled image. When the resolution of the images in
Py and Py, is closer to that of fH, a patch in jH could
have more similar patches recurring in the image pyramids.
Empirically, we select the value of s, via cross-validation
which will be discussed in Section 5.4.

A self-example random forests (SERF) Fgp is then
learned using the self-example training data which are ex-
tracted from HR and LR patch pairs in the image pyramids
Py and Pr. The training method follows that in Section
3.1. During testing, fusion model idea is not applied as Fsg
is a data dependent model and model fusion does not pro-
vide significant improvement.

5. Numerical Results

In this section, we report the numerical results of our
proposed methods and compare them to other commonly
used SISR methods.

5.1. Experimental Settings

The 91 training images from [25] are used in our exper-
iments for training. The testing datasets include Sezr5 [25]
(5 images), Seti14 [26] (14 images), and Urban100 [8] (100
urban images with rich similar patches). Quantitative eval-
uations of the super-resolved images are performed using
the Peak Signal-to-Noise Ratio (PSNR), and the Structural
Similarity (SSIM) index. Since human eyes are more sen-
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Figure 4: Comparison between SRRF and SRRFf with dif-
ferent number of decision trees on Set5 with upscaling fac-
tor 2.

sitive to intensity than color, color images are converted
from RGB color space to YCbCr color space. The lumi-
nance channel Y is upscaled using SR algorithms, while the
chrominance channels Cb and Cr are up-sampled using bi-
cubic interpolation. Upscaling factors 2 and 4 are consid-
ered in this paper.

For upscaling factor s, HR training images are first
down-sampled by a factor s and then up-sampled using bi-
cubic interpolation followed by BP to generate the LR train-
ing images. The patch size for both LR and HR patches is
3s x 3s. HR and LR patch features are extracted from HR
and LR training images at the positions containing patch
pixels. For LR patches, features are computed as the 1%¢
and the 2" order gradients of intensities; while for HR
patches, features are residuals between the HR patch and the
LR patch. As the dimension of the LR patch feature is too
large, they are compressed using principal component anal-
ysis (PCA), preserving 99.9% energy. During testing, the
LR image is up-sampled using bi-cubic interpolation and
enhanced by BP. The predicted HR image is reconstructed
by adding the estimated HR feature onto the LR image.

The minimum number of samples for leaf node construc-
tion N,,ip is set to be 2Dy,. The regularization parameter A
is set to be 0.01 by cross-validation. The maximum depth
of a decision tree is set to be £ = 20. Implementation of
the proposed methods is based on [17]. As demonstrated
in [17] that the alternating regression forests [ 18] can opti-
mize the global loss over random forests, we adopt the same
technique for training.

5.2. Random Forests for SR

The use of random forests for SR has been proposed in
[9, 16, 17]. The SR performance can be improved by aggre-
gating regression models retrieved from multiple decision
trees. We want to demonstrate that there is a potential for
further improvement by directly using the random forests
learned as in [9, 16, 17]. Figure 4 shows the average PSNR
of SRRF [17] and SRRF with model fusion (SRRFf) evalu-
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Figure 5: Comparison between SRHDT and SRHRF with
and without model fusion using different number of layers
on Set5 with upscaling factor 2.

ated on Set5 for upscaling factor s = 2 with different num-
ber of decision trees (i.e. varying from 1 to 3, 5, 10 and 15).
We can find that it is beneficial to fuse regression models.
When T' = 1, SRRFf provides over 0.5 dB improvement
in PSNR compared with SRRE. When 7" = 5, the improve-
ment is around 0.3 dB. As T increases, the gap between
SRRFf and SRRF slowly drops, but remains around 0.2 dB.
In the following experiments, we set the number of decision
trees in a random forests to 7' = 5.

5.3. Hierarchical Random Forests for SR

This section compares the proposed SRHRF method
with the SRHDT method [10]. To perform training for
SRHDT and SRHRF with 3 layers, we divided the 91 train-
ing images into three subsets. Each subset contains around
30 images for training a single layer. We evaluate these two
methods on Set5 for upscaling factor 2. For SRHDT, we set
Npin = 50D, as suggested in [10] to learn stable decision
trees which have low variance error. Using the same amount
of training data, each decision tree in SRHRF has more leaf
nodes than the decision trees in SRHDT as the V,,,;, was
set to be much smaller. Figure 5 shows the average PSNR in
dB of the super-resolved images using SRHDT and SRHRF
with and without model fusion. SRHRF with model fusion
offers around 0.3 dB improvement, while the average PSNR
of SRHDT with fusion model is only 0.15 dB higher than
that without model fusion. When model fusion is applied
in both methods, SRHRF has around 0.4 dB higher PSNR
than SRHDT. In the following experiments, the proposed
SRHRF method uses fusion model and is with three layers
of random forests by default.

5.4. Self-Example Random Forests

There are two important parameters for self-example
random forests, i.e. down-sampling factor s; and number
of images for the image pyramids Ny. The factor s; con-
trols the similarity between the self-example training data
and the SRHRF enhanced image as well as the amount of

37.20
37.10 ——3
£ 37.00 _____//_/i __________ ——Nd=1
% 36.90 e Nd =2
e Nd=4
36.80 ¢ Nd =38
36.70 - = “SRHRF

0.5 0.6 0.7 0.8 0.9 1
Sd

Figure 6: Self-example random forests enhanced results
with different down-sampling factor s; and number of im-
ages in the pyramid N, for upscaling factor 2.

training data available in the image pyramid pair. The im-
age number Ny is also related to the training data size.
Based on hierarchical random forests learned in previous
section, a SERF with 3 decision trees is learned using the
self-example training data extracted from the image pyra-
mid pair. The performance of SERF is evaluated by varying
sq and Ny on Set5 for upscaling factor 2. In Figure 6, the
green line is the baseline result provided by SRHRF. When
$4 1s too small, we obtain deteriorated results. This is due to
a mismatch between the structures in the down-sampled im-
ages and the super-resolved image by SRHRF. The average
PSNR increases fast between s; = 0.5 and sy = 0.7 and
plateaus after 0.7. It is also clear that more images in the
pyramids give better performance. Although Ny = 8 pro-
vides slightly better result, it requires longer online learning
time. Based on the numerical results, we set s; = 0.8 and
Ng4 = 4 for s = 2 to balance the reconstruction quality and
processing time. For upscaling factor 4, similar trends can
be observed and we set s4 = 0.8 and Ny = 4.

5.5. Comparison with State-of-the-art Methods

We compare our proposed methods i.e. SRHRF and
SRHRF+ with the state-of-the-art SISR methods, in-
cluding A+ [21], RFL [17], SRHDT [10], transformed
self-example (SelfEx) [8], SRCNN [4]. We note that
A+ [21] and RFL [17] are recent representative work
of the “first-classification-then-regression” based methods.
SRHDT method [10] cascades decision trees to boost the
performance. SelfEx [8] is the state-of-the-art self-example
based method. SRCNN [4] is the recent deep-learning based
method. All the comparison results are obtained by using
publicly available implementations with default settings.

As the 91 training images have been divided into multi-
ple subsets and the training data in each subset is small, the
performance limit of the hierarchical methods is not fully
exploited. For example, the SRRFf method in Section 5.2
which is trained using the whole 91 training images pro-
vides over 0.2 dB higher PSNR than SRHRF method with
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Bicubic A+ ([21] RFL[17] SRHDT[I0] SRCNN[4] SelfEx[¢] SRHRF SRHRF+
., _PSNR 3366 3654 36.54 36.92 36.66 36.49 37.19 37.29
Suts SSIM 09299 09544 09537 0.9546 0.9542 0.9537 09568 0.9574
L, _PSNR 2842 3028 30.14 - 30.48 3031 30.74 30.82
SSIM 08104  0.8603  0.8548 - 0.8628 08619 08706  0.8710
L, _PSNR 3024 3228 32.26 32.67 3242 3222 32.85 32.91
Setla SSIM _ 0.8683 09056  0.9040 0.9069 0.9063 09034 09097 09104
4 _PSNR 2600 273 2724 - 27.49 27.40 27.69 2774
SSIM_ 07027 07491 0.7451 - 0.7503 0.7518 07574 0.7582
L, _PSNR_ 2686 2920 29.11 29.75 29.50 29.54 30.13 30.77
Urban100 SSIM 08395  0.8938  0.8904 0.8985 0.8946 0.8967 09038 0.9110
@ 4 _PSNR_ 2304 2432 24.19 - 2452 2479 2470 25.10
SSIM 06577 07183 0.7096 - 0.7221 07374 07305 0.7422

Table 1: PSNR (dB) and SSIM of different SISR methods on Set5, Set/4 and Urban100 with upscaling factor 2 and 4.

(b) HR (PSNR)
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(a) Ground-truth HR

(c) SelfEx [8] (25.61dB)

(d) SRHRF (24.91dB) (e) SRHRF+ (27.09dB)

Figure 7: Reconstructed HR images of “img059” from Urban100 by different SISR methods for upscaling factor 2.
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(c) SelfEx [3] (30.04dB)

(d) SRHRF (31.18dB) (¢) SRHRF+ (31.85dB)

Figure 8: Reconstructed HR images of “img002” from Urban100 by different SISR methods for upscaling factor 2.

1 layer of random forests. In this section, 200 training im-
ages from Berkeley Segmentation Dataset (BSD) [15] will
be added to enrich the training data as in [17]. Image rota-
tions and flipping are also performed for data augmentation.

Table I reports the average PSNR (dB) and SSIM of
different SISR methods evaluated on Set5, Seti4, and Ur-
banl00 for upscaling factor 2 and 4. SelfEx [&] has on par
or slight lower performance than those example-based SISR
methods on Set5 and Set/4, while achieves state-of-the-art
performance on Urban100. This indicates that the example-
based SISR methods have more stable performance on nat-
ural scene images, while self-example based methods can
take advantage of the input images and achieve superior

results on images with self-similar patterns. Our proposed
SRHRF+ method tries to make use of the good features
of both example-based methods and self-example based
methods. Table I shows that the proposed SRHRF method
achieves the higher PSNR and SSIM in most scenarios com-
pared to other methods. SRHRF+ further improves SRHRF
by different amounts in dB depending on the content of the
image. For natural images in Set5 and Sez/4, the average
PSNR improvement is around 0.1 dB. For the urban images
with rich self-similarity in Urbanl00, the SRHRF+ method
provides 0.6 dB and 0.4 dB higher PSNR than our baseline
SRHRF method for upscaling factor 2 and 4, respectively.

Figure 7 and Figure 8 present the subjective comparisons
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Figure 9: Reconstructed HR images of “img082” from Urban100 by different SISR methods for upscaling factor 4.
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Figure 10: Reconstructed HR images of “img092” from Urbanl00 by different SISR methods for upscaling factor 4.

between SelfEx [8] and our proposed methods on testing
images from Urbanl00 for upscaling factor 2. In Figure
7, SelfEx restores fine structures but reconstructs less ac-
curate large structures (the thick lines near right bottom).
It achieves 0.7 dB higher PNSR than our baseline method
SRHREF. By exploiting self-examples, our enhanced method
SRHRF+ recovers even better fine structures than SelfEx
and achieves 2.18 dB improvement over SRHRF. In Fig-
ure 8, SRHRF has less ringing artifacts and already offers
higher PSNR than SelfEx. The PSNR of SRHRF+ is 0.78
dB and 1.71 dB higher than that of SRHRF and SelfEx, re-
spectively. Visually, there are still some artifacts around the
lines in the result by SelfEx and SRHRF, while most visible
artifacts are removed in the result of SRHRF+.

Figure 9 and Figure 10 further show the subjective com-
parisons for upscaling factor 4. In Figure 9, both SelfEx
and SRHRF reconstruct blurry and discontinuous edges,
while the reconstructed image by SRHRF+ is very close
to the ground-truth HR image. The PSNR improvement of
SRHRF+ over SRHREF is around 1 dB. In Figure 10, the
fine structures are severely aliased after down-sampling by a
factor 4. It is difficult for example based methods to remove
the aliasing artifacts due to high ambiguity. Self-example
based methods can alleviate the aliasing by exploiting self-
similarity. The reconstructed patterns by SelfEx is better
than that of SRHRF. However, both of them are still in the
aliased direction. SRHRF+ produces sharper edges and is
able to correct the aliasing artifacts in the result of SRHRF
using the internal training data. This validates the effective-

ness of our proposed self-example enhanced approach.

6. Conclusions

In this paper, we proposed SRHRF+ method which ex-
hibits the stability of the example-based SISR methods and
the adaptability of the self-example based SISR methods.
The hierarchical random forests approach clearly demon-
strates its superiority in learning statistical priors from ex-
ternal training images over random forests and hierarchical
decision trees for image super-resolution. The self-example
random forests approach exploits self-similarity from an
image pyramid pair which is constructed using the down-
sampled super-resolved image instead of the input LR im-
age and further improves the baseline results. Overall, our
proposed SRHRF+ method achieves state-of-the-art SISR
performance and shows excellent results for images with
rich self-similar patterns.

For future work, the self-example enhancement idea can
be applied in other SISR methods. More efficient training
strategies can be further exploited, for example, re-using the
existing random forests structure and updating the leaf node
using self-exemplar training data.
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