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Abstract

In this paper, we propose a deep CNN to tackle the im-

age restoration problem by learning the structured resid-

ual. Previous deep learning based methods directly learn

the mapping from corrupted images to clean images, and

may suffer from the gradient exploding/vanishing problems

of deep neural networks. We propose to address the im-

age restoration problem by learning the structured details

and recovering the latent clean image together, from the

shared information between the corrupted image and the

latent image. In addition, instead of learning the pure dif-

ference (corruption), we propose to add a “residual format-

ting layer” to format the residual to structured information,

which allows the network to converge faster and boosts the

performance. Furthermore, we propose a cross-level loss

net to ensure both pixel-level accuracy and semantic-level

visual quality. Evaluations on public datasets show that the

proposed method outperforms existing approaches quanti-

tatively and qualitatively.

1. Introduction

A lot of imaging algorithms/applications assume the in-

put images to be clean and of high-resolution. However,

in practice, these images may suffer from corruption, e.g.,

noise, or low resolution due to the limitation of digital imag-

ing. The image restoration task is to handle this problem

and recover the latent clean image, including image denois-

ing, super-resolution, artifact removal, etc. In general, a cor-

rupted image IC can be modeled as the latent clean image I

added with a certain type of corruption C. Image restoration

aims to recover clean image I by separating it from corrup-

tion C. Hence, if C can be accurately estimated, I can then

be well recovered. Notwithstanding the demonstrated suc-

cess, most of the traditional image restoration methods are

problem-specific and cannot be easily adapted to different

problems.

In recent years, deep convolutional neural networks

(CNNs) have become very popular in solving many high-

FormResNet

Figure 1. Application illustration of the proposed FormResNet on

image restoration tasks such as denoising, super-resolution, rain

removal, and depth enhancement (left to right).

level vision problems. There are also some emerging works

applying CNNs to low-level vision tasks like image denois-

ing [18, 5], by directly learning the mapping function from

a noisy image to its clean version. However, learning such a

dense mapping is prone to the gradient vanishing/exploding

problems of deep CNNs [2, 16]. Besides, most existing

CNN-based methods train the networks based on the pixel-

level ℓ2 norm (MSE) objective, which can easily produce

blur artifacts in the final inference.

To resolve the above problems, we model the image

restoration problem as learning the residual by CNN, in

which the corruption is considered as “residual informa-

tion”. In addition, we observe that the clean image and the

corrupted image share similar information in most homo-

geneous regions, but differ more in highly-structured (e.g.,

texture) regions. Since both the structured regions and cor-

ruptions are high-frequency signals in most cases, directly

learning the high-frequency residual is similar to approx-

imating a low-pass filter, and the highly-structured details

in the latent image are also filtered out (see Section 3.2).

Thus, we propose to extend the network to learn the for-

matted residual information. To this end, we add a “resid-

ual formatting” layer to format the residual to sparsely dis-

tributed and more structured information, which is favored

by deep residual learning [16]. The highly structured details

can then be reconstructed in the following layers.
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We further introduce a cross-level loss net to reduce the

artifacts caused by the conventional pixel-level ℓ2 norm.

Two gradient layers are added to model the loss in the gra-

dient domain. Besides, high-level similarity measured in

the feature domain is taken into consideration, which helps

improve the visual quality of the final result. We refer to

the final framework as FormResNet. Fig. 1 shows some

applications of the FormResNet. Extensive evaluation on

public datasets shows that the proposed framework outper-

forms the state-of-the-art denoising and other image restora-

tion methods.

The main contributions of this work include:

1. We design a new deep neural network to learn the for-

matted residual information to reconstruct the struc-

tural details in image restoration.

2. We propose a cross-level loss net that supervises the

network based on both pixel-level and high-level sim-

ilarities, resulting in better visual quality compared to

traditional MSE-based loss.

3. We achieve state-of-the-art performance. Specifically,

the proposed method outperforms existing methods

across different noise levels and noise types in a single

model, and is shown to be able to handle other image

restoration problems.

2. Related Work

Image Restoration. Image restoration is a widely stud-

ied problem in computer vision and remains an active area.

Extensive studies have been conducted to solve the problem

in the past decades. We refer the readers to a survey [27] on

image restoration for more details. Generally, these meth-

ods can be categorized into single image based methods and

multiple image based methods. Single image based meth-

ods like BM3D [7] utilizes non-local information from the

corrupted image itself to remove artifact like noise. As im-

age restoration is an ill-posed problem, image priors learned

from external dataset are also widely used [11, 30, 40, 9, 20]

to reconstruct the latent clean image. Usually the above

methods focus on a specific kind of corruptions and the re-

sult image tend to be over-smoothed.

Deep Learning for Image Restoration. In recent years,

CNN has been applied to some low-level vision problems,

including image filters [36, 21, 24], super-resolution [8, 19],

denoising [5, 34], deconvolution [35], stereo matching [38],

optical flow [10], among others. Xie et al. [34] combine

sparse coding and deep networks to handle problems like

complex pattern removing in image inpainting and denois-

ing. Burger et al. [5] learn a plain multi-layer perceptron

based on a large dataset for denoising, and obtain compet-

itive results to BM3D. Since then, other multi-layer mod-

els [31, 6, 33] are also proposed for image restoration.

Although significant improvement has been achieved,

most of these methods focus on learning the dense mapping

from observed image to the target one directly, while for

many image restoration problems such mapping is close to

an identical mapping, which is difficult to learn and prone

to the gradients vanishing/exploding problems [2, 16, 19].

The recent proposed residual learning scheme [16] aims to

solve these problems for deep neural networks and achieve

superior performance on various high-level problems like

classification, detection, segmentation, etc. In low-level

problems, residual learning has also shown its effective-

ness in single image super-resolution [19], in which a very

deep network is learned efficiently with the help of resid-

ual learning. A recent work proposes a deployed CNN [39]

with similar residual structure [19] for image denoising and

achieves promising results. Unlike previous residual learn-

ing that either stacks several blocks or directly learns the

difference, the proposed method uses a simple architecture

by introducing a residual formatting layer to model stochas-

tic residual information into a more structured one. It can

handle different noise types and levels in a single network

and generalizes well to other image restoration tasks. To

our knowledge, this is the first approach to tackle multiple

noise types and noise levels in a single model.

Objective Function. As CNN based methods are data-

driven, an objective/loss function is needed to constrain the

training process. Usually the objective is to minimize a ℓ2
norm (or MSE) loss L = ‖T − I‖

2
which is used to con-

struct the loss between the network inference I and the tar-

get label T . For regression problems like image restoration,

such kind of ℓ2 norm has been widely used in the litera-

ture [36, 21, 19, 39]. However, the ℓ2 norm is prone to cause

over-smoothed result. While most deep learning methods

focus on crafting the network structure, little attention has

been paid on the design of loss function. In [12], Gatys

et al. use the feature maps extracted from a basic CNN to

model the loss function for image style transfer. As in the

application of style transfer pixel-wise accuracy is not that

important, the feature map based objective function leads

to a good visual quality. The recent popular GAN (Gen-

erative Adversarial Network) [13, 28] directly uses a CNN

which named discriminator to supervise the training process

of the front generator network. Such ingenious structure not

only supervises the generator training but also improves the

objective part (discriminator) simultaneously. However, a

stable training is not easy to achieve for the GAN. In this

paper, we propose a new stable cross-level loss net that in-

tegrates pixel-level and semantic-level similarities, so that

both pixel-wise accuracy and high-level visual quality are

guaranteed.
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(a) FormResNet
(b) Cross-level loss net

(c) RecursiveFormResNet

Figure 2. Proposed network structure. (a) is the general framework of FormResNet, in which the orange block represents the formatting

layer; (b) is the cross-level loss net that incorporate pixel-wise ℓ2 norm, gradient consistency, and semantic high-level features, to better

describe the similarity between network inference and ground truth label; (c) is the RecursiveFormResNet that takes convolutional layers

as the formatting layer in (a). This structure can be performed in a recursive fashion. ⊕ denotes pixel-wise subtraction/summation.

(a) Noisy image
(b) Inference by

DiffResNet
(c) Noise difference

(d) Inference by

FormResNet

Figure 3. Different residual information. (a) is a noisy image cor-

rupted by Gaussian noise with σ = 25; (b) is the inference output

of DiffResNet, which includes both the noise and high-structured

regions; (c) is the difference between the ground truth noise and

(b); (d) shows the inference from FormResNet. High-structured

details (c) are also removed when doing denoising (subtract (b)

from (a)) by DiffResNet while (d), after the formatting layer, well

recovers the structured details.

3. Proposed Method

In many image restoration problems, the observed image

is similar to the target latent one. Taking denoising as an

example, the “difference” between noisy image and clean

image is the pure noise itself. We observe that most ho-

mogeneous regions in the corrupted image and clean image

share similar low-frequency information, while the highly-

structured (high-frequency) regions between them are rela-

tively different. Due to the inherently different properties

in these two regions, learning the difference map only can-

not well reconstruct the high-frequency regions, which is

shown in Fig. 3(c). As a result, we bias the learning pro-

cess to structured regions, while the homogeneous regions

are mainly handled by a formatting layer. In this way, the

residual after formatting layer refers to the structure or fine

details of the image (Fig. 3(d)).

3.1. Learning the Difference

Conventional CNN-based methods usually learn the

mapping from corrupted image to clean image directly

[8, 35, 5]. Whereas for deep neural network, during the

training all the image details require to be preserved through

many layers. This is prone to the gradient vanishing and

exploding problems [2, 16, 19]. Thus we propose to learn

the residual mapping Ĉ = f(IC) that only sparse residual

information needs to be learned. We name this network as

DiffResNet which consists of fully convolutional layers and

a skip connection from the network input to the inference.

A similar structure is proposed in a concurrent work [39].

D layers are used in DiffResNet: the first layer is a conv.

layer with 64 filters of size 3 × 3 × c (c = 1 for gray-

scale image and c = 3 for color-scale image) followed by a

ReLU (rectified linear unit); the following layers except the

last layer are of the same type consist of 64 filters of size

3 × 3 × 64 and followed by ReLUs; the last layer which is

used for reconstruction, is a single filter of size 3× 3× 64.

The input of the network is the corrupted image, and the in-

ference is the residual, i.e., corruption. The inference is sub-

tracted from the corrupted input to form the loss function as
1
2‖I − (IC − f(IC))‖

2
. By minimizing this objective over

the training set {I
(i)
C , I(i)}Ni=1 we can learn the parameters

for the model.

3.2. Learning the Formatted Residual

Due to learning the residual instead of dense mapping,

the above DiffResNet architecture is shown to achieve bet-

ter performance and converge faster than previous “direct

learning” (Fig. 4). Such DiffResNet can be considered as

approximating a low-pass filter. The advantage of low-pass

filter is that the high-frequency artifact (e.g. noise) can be
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Figure 4. Performances for residual learning. We compare

FormResNet with and without the proposed cross-level loss net,

DiffResNet, and NoRes (training without residual learning).

filtered, whereas the drawback is also the “low-pass” prop-

erty. Besides the artifact, other high-frequency information

(structures, edges, etc.) is also filtered out. Thus the la-

tent highly-structured regions are difficult to be recovered,

as shown in Fig. 3(c). This is because the high-frequency

structured regions show inherently different properties to

the homogeneous regions.

Residual Formatting Layer. We propose a new struc-

ture to handle this problem, and the network architecture

is shown in Fig. 2. Unlike DiffResNet, which learns the

pure difference, we add a “residual formatting” layer (or-

ange part in Fig. 2) to format the residual to be more struc-

tured information. The proposed formatting layer aims to

reduce the corruption on the input image. It is a non-linear

operator, which can be constructed by conventional method

(e.g. BM3D) or neural network (Fig. 2 (c)). Through this

formatting layer, the residual map lies more on the image

details, instead of random distributed noise. As shown in

Fig. 3(d) and Fig. 2, the formatted residual is much sparser

than the previous random one, with most regions closer to

zero and residual lies in highly-structured regions. The rest

part of the network is similar to DiffResNet with several

weight layers. The proposed formatting layer removes high-

frequency corruption in homogeneous regions well, while

the structured regions are left to the remaining part of the

network. In this way, we take advantage from both low-

pass filter and high-pass filter. When taking neural network

as the formatting layer, the FormResNet can be represented

in a recursive fashion (Fig. 2(c)): y[k] = x[k] + y[k − 1]
where y[k] is the output of kth formatting layer and x[k] is

the learned formatted residual. Fig. 2(c) shows the structure

when k = 2. In this fully convolutional version (Fig. 2(c)),

the formatting layer is jointly trained with other layers end-

to-end.

In order to avoid the resolution reduction problem [21, 8]

and predict a dense output with the same size as the input,

we pad zeros before each conv. layer and it turns out to work

Latent clean image (PSNR/SSIM) DiffResNet (27.21/0.6879)

FormResNet w/o cross-level loss

(28.80/0.7716)

FormResNet w/ cross-level loss

(29.09/0.7778)

Figure 5. Visual comparison between DiffResNet and FormRes-

Net. The experiment setups are the same as in Fig. 4.

well. In addition, we find the batch normalization (BN) [17]

is benefit to the convergence speed, then we simply add a

BN layer between each of the conv. and ReLU layer.

Cross-level Loss Net. Computer sees images in a man-

ner of “pixel-to-pixel”, while we humans see more semantic

information. In most CNN-based methods, when judging

the quality of image, a pixel-wise similarity (e.g. ℓ1 norm,

MSE) is adopted as the loss function. Whereas in practice

we not only count on pixel-wise performance, but care more

about the visual quality in many situations. In addition, us-

ing MSE loss only can usually get blurry images, as shown

in Fig. 5. Thus in this paper we also consider high-level

visual information for the loss description, and propose a

cross-level loss function that combines both the pixel-level

information and high-level semantic features, as shown in

Fig. 2(b).

Let x be the corrupted image and y the latent clean image

and F () as the formatting function in the residual formatting

layer. Then the pixel-level loss can be defined as:

Lpix(Θ) =
1

2N

N
∑

i=1

∥

∥r −R(xi,Θ)
∥

∥

2
, (1)

where r = y − F (x) is the residual image, R(xi,Θ) is the

estimated residual by the network, and N is the number of

training pairs.

For high-level loss, we first leverage the feature map ex-

tracted from a stack of convolutional layers φ, which is

part of a pre-trained network used for high-level vision.

These convolutional layers are concatenated to the end of

our FormResNet. The feature-level loss part (pink block in

Fig. 2(b)) is inspired by [12] which optimizes a style trans-

fer problem by minimizing the difference between feature

maps. As φ is only used to extract feature maps for loss

computation, all the parameters in φ are fixed instead of si-

multaneous learning with the main body as in [12]. Denote
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φl as the feature map after the l-th ReLU layer of φ, and the

dimension of φl as Wl × Hl × Cl where W,H,C are the

width, height, and number of channels respectively. Then

the feature-level loss is defined as:

Lfeat(Θ) =
1

2N

N
∑

i=1

1

W i
l H

i
lC

i
l

∥

∥φl(y
i)− φl(ŷ

i)
∥

∥

2
, (2)

where ŷ = F (x) + r̂ is the recovered image. In addition,
information in gradient domain is also leveraged as a high-
level loss term as:

Lgrad(Θ) =
1

2N

N
∑

i=1

∣

∣

∣
∇h(y

i)−∇h(ŷ
i)
∣

∣

∣
+

∣

∣

∣
∇v(y

i)−∇v(ŷ
i)
∣

∣

∣
,

(3)

where ∇h and ∇v indicate the horizontal and vertical gra-
dients. The gradient loss term is achieved by two Sobel
layers (gray block in Fig. 2(b)) concatenated to the end of
FormResNet. By combining the above pixel-level and high-
level loss components together, we get the final cross-level
loss net representation:

Lcross(Θ) = (1−α−β)·Lpix(Θ)+α·Lfeat(Θ)+β ·Lgrad(Θ),
(4)

where α, β are balancing weights for the corresponding

components.

4. Network Properties

In this section, we study the properties of the proposed

network, including the effectiveness of formated residual

learning, loss components, network depth and the extension

to learn multiple corruptions in a single model.

4.1. Formatted Residual Learning

Residual learning is suitable for image restoration as in

many restoration problems the corrupted image and its cor-

responding latent image is highly correlated. However, the

difference between the corrupted and latent images varies

for different problems. It is not that easy to directly apply

the same structure (e.g. [19]) to different tasks. As a result,

we show the effect of FormResNet compared to learning

the difference (DiffResNet). In addition, the influence of

the cross-level loss net is also included for the comparison.

In this experiment, image denoising is taken as an ex-

ample. We use 10 layers (each layer consists of conv., BN,

and ReLU except the first and last layer) for the study on

BSD100 (Section 5.2) and the corrupted noise is an ad-

ditive Gaussian noise with zero mean and standard devi-

ation of 25. A conventional method (BM3D [7]) is used

as the formatting layer in FormResNet (other methods like

EPLL [40], WNNM [14] can also be taken, BM3D is just

used for simplicity when considering the accuracy and effi-

ciency). The VGG-16 net [32] pre-trained for classification

is utilized as the function φ, and l = 4 (feature map af-

ter ReLU2 2). The performance curve is shown in Fig. 4.
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Figure 6. Effectiveness of different loss terms. Quantitative per-

formance (left corner) and qualitative results (right) are shown for

comparison.

We can see by using residual learning the network con-

verges faster than without residual (NoRes) learning. After

adding the residual formatting layer, the network converges

in fewer iterations and result in a higher PSNR. When re-

placing the MSE loss with the proposed cross-level loss,

the performance boosts further. The added formatting layer

together with the cross-level loss function are powerful for

residual learning. A visual comparison is shown in Fig. 5, in

which FormResNet shows a better visual quality compared

to others, and more details are recovered by the cross-level

loss.

4.2. Loss Components

In order to evaluate the effectiveness of the proposed

cross-level loss net, in this study we compare the perfor-

mance of different loss terms in the loss net. The FormRes-

Net with k = 1 i.e. DiffResNet is taken as the testbed, after

which different loss terms are concatenated. Three parts

of ℓ2 norm (MSE) loss, ℓ2 norm added feature-loss, and

the final cross-level loss are concatenated respectively. The

restoration task of image denoising is used for the evalua-

tion with added Gaussian noise (sigma = 25) on Kodak

dataset. The comparison result is shown in Fig. 6. From the

quantitative result we can see with each added loss term,

the performance boosts continually. We speculate this is

due to the local convexity and smoothness properties of dif-

ferent measures: ℓ2-only may has many local minima that

prevents a global (or better local) minimum, while for the

combination with ℓ1-gradient and feature-level constrains

perceptually plausible solutions may lead to a much better

minimum. In the visual comparison (right side of Fig. 6),

the blur artifact caused by ℓ2 norm is noticeable on the sky

region, while for the characters our cross-level loss recovers

more details.
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4.3. Network Depth

Here we study the network performance with respect to

the depth of the network. Taking the formatting layer as a

10-layer convolutional module, the performance of different

number of modules are evaluated as shown in Fig. 7 (exper-

imental settings are the same as in Section 4.2). We can see

that the network performance boosts when using the format-

ting layer and almost converges after the 2nd module, i.e.

structure in Fig. 2(c). It indicates that the performance not

always increases with the depth when the network achieves

its capacity.

4.4. Multiple Corruptions in a Single Model

Usually for CNN-based methods, each kind of corrup-

tions (e.g. noise level or type) corresponds to a single model,

which is not flexible for real application. With the proposed

formatting layer, different kinds of corruptions can be for-

matted to an analogous representation, which can be jointly

learned for the corresponding residual map.

In this study, we consider a general blind denoising prob-

lem. The training data consists of different noise levels

and types: the Gaussian noise with different noise levels,

salt&pepper noise and speckle noise. The recursive version

of FormResNet with k = 2 (Fig. 2(c)) is trained on the

above multi-type data as a single model for all noise types.

We denote this network as FormResNet-m. Due to the var-

ious noise types, median filter (medfilt2 in Matlab with de-

fault parameters) is used as a baseline method for compar-

ison since many applications use median filter as prepro-

cessing. The state-of-the-art CNN-based denoising method

DnCNN [39] is also included for the comparison. As the

DnCNN has a blind Gaussian denoising version (DnCNN-

B), we finetune their model on our multi-type training data

for a fair comparison. Experiment is performed on Kodak

dataset for example and the result is shown in Table 1. We

can see that by training a single model, image corrupted

with different noise levels/types can be improved to a large

extent. We also test the Poisson noise which is unseen in the

training data. Our FormResNet-m also performs well for

Poisson noise. Example visual results are shown in Fig. 8.

clean/corrupted medfilt2 FormResNet-m

S
al
t&
P
ep
p
er

S
p
ec
k
le

DnCNN-B*

Figure 8. Visual results on multiple corruptions. kodim06 and Pep-

pers are corrupted with Salt&Pepper and Speckle noise.

5. Experiments and Applications

In this section, we show the detail setups for the pro-

posed network and the performance on several image

restoration applications.

5.1. Network Training

The proposed network is implemented by the MatCon-

vNet package on a server equipped with a Nvidia Tesla K40

GPU card and an Intel Core i7-4790 CPU.

We use the fully convolutional FormResNet in our ex-

periment (i.e. RecursiveFormResNet in Fig. 2(c)) and set

k = 2. The final network depth is set to 20, which is cor-

responding to the receptive field of the training patch size.

Training is carried out by using the stochastic gradient de-

scent (SGD) [29] on mini-batch. The mini-batch size is 128

for denoising and 64 for other applications. A weight de-

cay for the SGD learning is set to 10−4 and the momentum

is 0.9. For all experiments, the number of training itera-

tions is under 40 epochs (some converge in 10 epochs). The

learning rate decreases gradually and is initialized to 0.1.

The balancing weights for the cross-level loss net are set to

α = β = 0.3. The weights for the network are initialized

according to the method proposed in [15], which is shown to

be better than random initialization when using non-linear

ReLU as the activation function.

5.2. Applications

Image Denoising Image denoising is an fundamental

problem for many computer vision problems. Theoretically,

synthetic training data can be infinitely generated. Whereas

in this paper, the training set is generated from a small

dataset covers 400 natural images: the BSD500 [1] (train

and test subsets). For testing, we use three datasets: 14

commonly used benchmark images (Set14) [7, 4, 14, 23] as

shown in Fig. 10, BSD100 (the val subset of BSD500), and

the Kodak Lossless Image Suite 1. In this experiment, only

gray-scale images are shown for example (for color images,

we can simply adjust the number of input channels to 3).

Training images are added Gaussian noise or other types of

1http://r0k.us/graphics/kodak/index.html
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Methods Gs15 Gs25 Gs45 Salt&Pepper Speckle Poisson Average

medfilt2 27.73/0.6987 25.40/0.8745 21.73/0.3515 30.08/0.8682 23.98/0.5184 30.60/0.8745 26.59/0.6976

DnCNN-B* 31.93/0.8624 29.81/0.8037 27.64/0.7297 28.57/0.7876 28.81/0.8087 33.59/0.9019 30.06/0.8156

FormResNet-m 32.61/0.8842 30.34/0.8301 27.82/0.7489 43.76/0.9945 31.01/0.8667 38.80/0.9682 34.06/0.8821

Table 1. Performances on different corruptions, including Gaussian (Gs), salt&pepper, speckle, and Poisson noise (unseen in the training

set). Average PSNR/SSIM values are reported for quantitative evaluation. DnCNN-B* means the finetuned result of DnCNN-B [39].

Clean

(PSNR/SSIM)

BM3D

(25.52/0.6541)

FormResNet

(26.28/0.7129)

EPLL

(25.97/0.6972)

WNNM

(25.76/0.6681)

MLP

(25.92/0.6826)

DnCNN-S

(26.18/0.7067)

Figure 9. Visual results on 156065 (BSD100) with Gaussian noise level 25. The proposed FormReNet recovers sharp contours and more

details, compared to other methods.

Figure 10. Commonly used test images (Set14).

noises in corresponding experiments. Data augmentation

including flipping and rotation are used on the training set.

For testing, we use the whole image as input without crop-

ping.

We show both quantitative (Table 2) and qualitative

(Fig. 9) performance for the proposed network and give

a comparison with other state-of-the-art image denoising

methods including: BM3D [7], EPLL [40], WNNM [14],

MLP [5], and DnCNN [39]. The implementation of these

methods are all from the authors’ codes. Metrics of PSNR

(Peak Signal-to-Noise Ratio) and SSIM (Structural SIMi-

larity) are calculated for the evaluation. Following [33],

the noisy images are quantized to range [0-255] for real-

istic evaluation. From the result we can see the proposed

FormResNet outperforms other methods and recovers more

details and structure, especially on high noise levels.

Single Image Super-resolution Our proposed network

can also be applied to single image super-resolution. We

use 91 images from [37] as our training set, which is smaller

than the final training set (291 images) of [19]. Multi-

ple scaling factors of 2, 3, 4 are trained together for the

network. Evaluation is performed on Set5 [3] and the re-

sults are shown in Table 3. The results of state-of-the-art

VDSR [19] training on 91/291 images and the basic bicubic

interpolation are included for comparison. From the table

we can see that, even training with much fewer images, our

FormResNet outperforms VDSR training on the same 91

image set. Our method even performs better than the VDSR

training on 291 images.

Single Image Rain Removal We apply our method to

the problem of rain removal as a illustration to artifact re-

moval. As there is no large public rain dataset, we use the

12 rain image dataset from [22] for our evaluation. Train-

ing is performed on randomly selected 10 images from the

12 rain image and the rest 2 images are used for evaluation.

Similar to the denoising application, image patches are ex-

tracted with data augmentation for the training process. For

comparison, a single image rain removal method DSC [25],

and DnCNN-B finetuned on the 10 training images are used

here. Results are shown in Fig. 11. We can see that most of

the rain artifact on the input image is removed by our Form-

ResNet. Far fewer rain streaks can be observed compared

to other methods.

Other Applications The powerful capacity of our net-

work can also benefits other image restoration applications.

Examples on natural image inpainting/completion, single

depth image enhancement are shown in Fig. 12. For nat-

ural image inpainting 50% of the total pixels are randomly

removed from the original image, while for depth image

enhancement both a downsample (with scale=3) and pixel

removal (with 50%) are performed on the clean sharp depth

map. The training set for inpainting is the BSD400 [1] while

344 random selected images from [26] are used to train the

depth enhancement.

Table 4 compares the computation time of different

methods. Image sizes of 256 × 256 and 512 × 512 are in-

cluded, with Gaussian noise level 25. Computation time

on GPU is shown if available. Overall, our running time

is comparable to BM3D on CPU. However, our method on

GPU is fast, and comparable to the state-of-the-art DnCNN.
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Testsets σ BM3D EPLL WNNM MLP DnCNN-S FormResNet

Set14

15 32.31/0.8959 32.03/0.8952 32.62/0.8981 - 32.75/0.9034 32.77/0.9036

25 29.79/0.8471 29.48/0.8436 30.02/0.8506 29.70/0.8455 30.22/0.8584 30.30/0.8599

45 26.55/0.7663 26.33/0.7556 26.76/0.7693 26.60/0.7603 26.91/0.7747 27.38/0.7873

75 23.41/0.6766 22.80/0.6443 23.03/0.6622 23.88/0.6829 23.18/0.6637 24.89/0.7093

BSD100

15 30.79/0.8641 30.92/0.8763 31.01/0.8684 - 31.39/0.8831 31.51/0.8848

25 28.14/0.7842 28.29/0.7979 28.31/0.7893 28.46/0.7960 28.71/0.8106 28.98/0.8153

45 25.16/0.6680 25.28/0.6743 25.31/0.6707 25.61/0.6656 25.56/0.6883 26.34/0.7114

75 22.56/0.5703 22.20/0.5481 22.23/0.5446 23.25/0.5771 22.29/0.5515 24.31/0.6154

Kodak

15 32.19/0.8738 32.12/0.8792 32.45/0.8770 - 32.76/0.8883 32.87/0.8890

25 29.69/0.8112 29.57/0.8134 29.90/0.8145 29.84/0.8142 30.19/0.8300 30.42/0.8307

45 26.76/0.7207 26.60/0.7148 26.95/0.7220 26.95/0.7129 27.05/0.7329 27.76/0.7457

75 23.95/0.6413 23.36/0.6126 23.70/0.6295 24.51/0.6461 23.57/0.6273 25.58/0.6702

Table 2. Comparison results on Set14, BSD100, and Kodak. We compare different methods on the average PSNR/SSIM values. Best

performance is shown in bold. The proposed FormResNet consistently outperforms other methods on each dataset.

Scale Bicubic VDSR-91 VDSR-291 FormResNet-91

x2 33.66 37.06 37.53 37.55

x3 30.39 33.27 33.66 33.75

x4 28.42 30.95 31.35 31.40

Table 3. Performance comparison on single image super-

resolution on Set5. Numbers in the table are PSNR values.

Rain image

De-rained image by DnCNN-B* De-rained image by FormResNet

De-rained image by DSC

Figure 11. Comparison result on rain removal. Fewer rain streaks

can be seen on the result of our FormResNet, compared to those

of DSC and DnCNN-B.

size BM3D EPLL WNNM MLP DnCNN-B FormResNet

2562 0.54 30.67 146.42 2.37 1.05/0.01 1.11/0.01

5122 2.24 124.54 599.16 6.56 4.60/0.04 4.62/0.05

Table 4. Comparison on computation time in seconds. Time on

CPU/GPU (if available) is reported.

6. Conclusion

In this paper, we have presented a formatted residual

learning framework for image restoration. A residual for-

matting layer is proposed to format the residual information

to structured details. The proposed cross-level loss net con-

Natural image inpainting Depth image enhancement

Figure 12. Other applications on natural image inpainting (left)

and depth image enhancement (right). Top row: corrupted images;

Bottom row: restored images by our FormResNet.

tributes to high visual quality by leveraging high-level simi-

larity. Evaluations on multiple public datasets show that the

proposed FormResNet outperforms existing image restora-

tion methods both quantitatively and qualitatively, while be-

ing very efficient. FormResNet is also able to handle dif-

ferent corruptions (noise types and noise levels) in a single

model. By applying different operations to the residual for-

matting layer, we believe the proposed FormResNet can be

easily extended to more other low-level vision problems.
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