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Abstract

In this paper, we focus on constructing an accurate su-

per resolution system based on multiple Convolution Neural

Networks (CNNs). Each individual CNN is trained sepa-

rately with different network structure. A Context-wise Net-

work Fusion (CNF) approach is proposed to integrate the

outputs of individual networks by additional convolution

layers. With fine-tuning the whole fused network, the ac-

curacy is significantly improved compared to the individual

networks. We also discuss other network fusion schemes,

including Pixel-Wise network Fusion (PWF) and Progres-

sive Network Fusion (PNF). The experimental results show

that the CNF outperforms PWF and PNF. Using SRCNN as

individual network, the CNF network achieves the state-of-

the-art accuracy on benchmark image datasets.

1. Introduction

Image Super Resolution (SR) is a process for recov-

ering a High-Resolution image (HR) from a single Low-

Resolution (LR) image. Most modern single image super-

resolution methods rely on machine learning techniques.

These methods focus on learning the relationship between

LR and HR image patches. A popular class of such algo-

rithms uses an external database of natural images to extract

training patches, and then constructs an LR to HR mapping.

Various learning algorithms have been used, including near-

est neighbor approaches [22], manifold learning [7], dictio-

nary learning [11][10], and locally linear regression [34].

Recently, the convolutional neural networks become popu-

lar.

Many CNNs are introduced into SR in these years. Some

of them utilize very deep networks [17][18] or specific net-

work architectures such as deep ResNet [19][20]. These

works ensure high-accuracy but result in a relatively large

network size and low efficiency. The training is also dif-

ficult due to the hyperparamter tuning, especially for large

diverse training set. Other researchers adopt less layers and

simple network structure, such as SRCNN [13]. Training

such network is relatively easy, even with random weight

initialization and very large training sets. In contrast, the

accuracy of these networks will be lower.

In this paper, we discuss how to construct a super res-

olution system based on fusing different individual net-

works. Our contributions are two folds. First, we propose

a Context-wise Network Fusion (CNF) framework to fuse

multiple individual networks. Each individual network con-

structs a mapping from LR to SR space. Since the output

feature maps of the individual networks might have dif-

ferent context characteristic, additional convolution layers

are applied on these feature maps. The outputs of these

convolution layers are summed as the final output. CNF

has no limitations on the architecture of the individual net-

works, so it could be used for fusing any type of SR net-

works. Second, we discuss other network fusion schemes,

including Pixel-Wise network Fusion (PWF), and Progres-

sive Network Fusion (PNF). In the experiments, multiple

layers are added into SRCNN [13] as individual networks.

The results show that the proposed CNF network signifi-

cantly outperforms other fusion schemes. The CNF con-

structed by three SRCNNs achieves the state-of-the-art per-

formance, with acceptable efficiency.

The rest of this paper is structured as follows. Section 2

gives the related works on super resolution. Section 3 de-

scribes different ways of network fusion. Section 4 gives

the implementation details of training individual networks

and fused networks. Section 5 shows the experimental re-

sults on benchmark image dataset, Set5, Set14, BSD100,

and NTIRE challenge dataset. Conclusions are in the last

section.

2. Related Work

In these years, many SR methods have been developed

by the computer vision community [1][2]. Early meth-

ods use efficient interpolations such as bilinear, bicubic, or

Lanczos filtering [21]. These filtering algorithms can gener-

ate smooth HR outputs, which however lack high frequency

information. Later, structural and shape prior are introduced

to enhance these interpolations [5][6][24]. Although they
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might retrieve the details of a few edges and contours from

the smooth output, the overall quality is still low.

Later, the learning based methods are widely used to

construct a mapping from the LR space to the HR space.

Some approaches focus on the internal patch redundancy

[3][23]. Glasner et al. [3] exploited such redundancies

across scales and integrated the example-based SR with

multi-image SR. Huang et al. [23] utilized the geometric

variations and explicitly localized planes in the scene to

expand the internal patch search space. The detected per-

spective geometry was adopted to guide the patch search

process. Others prefer using external dictionaries to learn

regression functions to represent this mapping. The typical

methods include neighbor embedding [7], Markov network

[22], kernel regression [4], random forest [26], sparse cod-

ing [25][9][10][12], and convolution neural networks.

In the pioneering work SRCNN [13][15], Dong et al. in-

troduced a CNN constructing a mapping from the bicubic

upsampled LR space to HR space. SRCNN is relatively ef-

ficient, but the accuracy is limited due to the 3-layer struc-

ture. To enhance the accuracy, some researchers focus on

designing more complicate networks. Kim et al. [17] uti-

lized residual learning and trained a 20-layer network with

small filters and gradient clipping. Wang et al. [27] inte-

grated CNN with sparse representation prior. The network

was trained by the learned iterative shrinkage and thresh-

olding algorithm. Others focus on utilizing perceptual loss

function [31] instead of the Mean Square Error (MSE) to

get the HR results similar to natural images. Sonderby et al.

[30] proposed a CNN network based on maximum posterier

estimation. Ledig et al. [19] employed a deep residual net-

work (ResNet) as the discriminator of the Super Resolution

Generative Adversarial Network (SRGAN). Dahl et al. [20]

combined the ResNet with a pixel recursive network, which

showed promising results on face and bed images. The ma-

jor problem of these networks is the difficult hyperparame-

ter tuning in the training, such as the weight initialization,

the weight decay rate, and the learning rate. With inappro-

priate parameters, the training might have higher risk for

falling into the local minimum, especially for a large diverse

training set.

Other researchers investigating improving the efficiency

of the CNNs by learning the upscaling filters. Dong et al.

[29] proposed the fast version of SRCNN with less filters

and smaller kernels. Shi et al. [28] designed a sub-pixel

convolution layer, which consists of an array of upscal-

ing filters. These methods start the super resolution from

smaller feature maps and receptive fields. Although the ef-

ficiency is improved, the accuracy is not as good as the net-

works working on larger feature maps.

There are also some researchers working on using mul-

tiple models together for super resolution. Wu et al. [35]

proposed the 3D convolutional fusion (3DCF) method us-

ing the exact same convolutional network architecture to ad-

dress both image denoising and single image super resolu-

tion. Timofte [37] designed a locally adaptive fusion of the

anchored regressors. In this paper, we focus on improving

the accuracy of simple individual networks (e.g., SRCNN)

by the proposed context-wise network fusion. Multiple SR-

CNNs are fused by additional convolution layers. The out-

put SR network achieves the state-of-the-art performance,

with a relatively simple learning procedure.

3. Fusing multiple convolution neural net-

works

Let x denote a LR image and y denote a HR image.

Given N training samples {(xi, yi), i = 1, . . . , N}, sup-

pose we have M individual CNNs denoted as {Sj , j =
1, . . . ,M}. Each of them gives a prediction

ŷij = Sj(xi), i = 1, . . . , N, j = 1, . . . ,M. (1)

Our goal is to construct a network S = F{S1,...,SM}

based on these individual networks, which makes predic-

tion

ŷi = S(xi) = F{S1,...,SM}(xi), (2)

while minimizing the error function

L(S) =

n∑

i=1

l(yi, ŷi). (3)

To construct the F{S1,...,SM}, a straightforward way is

using the pixel-wise operation, which is called Pixel-Wise

network Fusion (PWF), as shown in Fig. 1. The fused out-

put is the pixel-wise weighted sum of the outputs of indi-

vidual networks. Such fusion scheme could be denoted as

ŷi = F{S1,...,SM}(xi) =

M∑

j=1

wjSj(xi) + bj , (4)

where wj and bj are constants.

The PWF might work well for some cases. Similar fu-

sion scheme has been used for object detection [14][36] or

classification [16]. In the super resolution, since the output

is a feature map with relatively complicate characteristics,

pixel-wise fusion will not fit well.

Another way is progressively organizing the individual

networks, e.g., using the output of the previous network as

the input of the next network. It is inspired by cascade re-

fining the SR output [12]. This fusion is called Progressive

Network Fusion (PNF), as defined in equation (5)

ŷi = F{S1,...,SM}(xi) = S1(S2(. . . SM (xi))). (5)
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Figure 1. Pixel-Wise network Fusion (PWF) based on 3 individual

networks.

Figure 2. Progressive Network Fusion (PNF) with 2 individual net-

works.

For the PNF, the input of each progressive individual net-

work will be different. So it requires generating multiple

training sets. An advantage of the PNF is that it motivates

us for a ‘preview’ stage in the super resolution system, e.g.,

use an efficient network to roughly SR the LR image to a

coarse HR image, and then apply a complicate network to

refine the coarse HR image to the final output. Such SR

preview will be very useful in the real SR application.

We propose the Context-wise Network Fusion (CNF) as

follows

ŷi = F{S1,...,SM}(xi) =

M∑

j=1

Wj ∗ Sj(xi) + bj . (6)

In equation (6), {Wj , bj} are the fusion layers constructed

by convolution kernel(s). The weights of the fusion layers

could be learned by fine-tuning the whole network. In the

fine-tuning, the weights of the individual networks could be

either frozen or not. Fig. 3 gives an example of two CNFs

constructed by 3 individual networks. The CNF in Fig. 3(a)

only learns the weights of the fusion layers, while freezing

the weights of the individual networks. So the output could

be considered as the fusion of three intermediate HR images

from individual networks. The Sj in equation (6) will not be

modified in the CNF training. The CNF in Fig. 3(b) fine-

tunes both the fusion layers and the individual networks.

This will result in different Sj after the CNF training.

In the experiments, we show that both of these two

CNFs improve the accuracy compared to individual net-

works. Training without freezing the weights of the indi-

vidual networks leads to larger gain of the accuracy.

4. Implementation

4.1. Learning individual network

SRCNN [13][15] is a representative baseline method

for deep learning-based SR approach. SRCNN consists

of three layers: patch extraction/representation, non-linear

mapping, and reconstruction. It could be trained on large

diverse training set (e.g., ImageNet) with random weight

initialization and fixed learning rate. In this paper, we uti-

lize SRCNN as the individual network.

In [15], Dong et al. tested deeper model but did not

find superior performance. They concluded that deeper net-

works did not always result in better performance. Kim

[17] succeeded in training a 20-layer CNN with specific

weight initialization, higher learning rate and gradient clip-

ping. But careful parameter tuning is required. We ar-

gue that with the same simple parameters as conventional

3-layer SRCNN, deeper network still gives better perfor-

mance.

We first train a 3-layer SRCNN as the baseline follow-

ing the SRCNN 9-5-5 structure in [15]. {64, 32, 32} filters

of spatial sizes 9 × 9, 5 × 5, and 5 × 5 are used respec-

tively for the first, second, and third layer. To get deeper

SRCNN, a feasible way is to use the existing weights of

current SRCNN. So we insert new layers into the SRCNN

9-5-5, e.g., adding a layer with 32 3 × 3 filters in the mid-

dle. This results in a 4-layer SRCNN as SRCNN 9-5-3-5.

Different from [15] that randomly initializes the weights for

all the layers, we inherit the weights of the existing 9 × 9,

5 × 5, and 5 × 5 layers, and only randomly initializes the

new 3×3 filter. We find that training such a 4-layer SRCNN

with the same learning rate as 3-layer SRCNN is easy. The

convergence is fast, and the accuracy is significantly better

compared to 3-layer SRCNN. This idea could be applied it-

eratively to generate deeper SRCNN, e.g., from 4-layer SR-

CNN 9-5-3-5 to 5-layer SRCNN 9-5-3-3-5... An illustration

of the trained deeper SRCNN is in Fig. 4. The LR image is

upsampled to the desired size, and then feeded into SRCNN

to get the output HR image.

In the implementation, we insert two 3 × 3 layers each

time, which results in SRCNNs from 3 layers to 15 layers.

Zero padding is applied for each 3×3 layer to make the size

of the output feature map consistent. To accelerate the train-

ing, the 3-layer SRCNN is trained to 50 epochs, and other

SRCNNs are trained around 15 epochs after inheriting the

weights. All learning rates are fixed to 0.0001 without any
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Figure 3. Context-wise Network Fusion (CNF) with 3 individual networks. (a) Learning the fusion layers while freezing the weights of the

individual networks. (b) Learning the fusion layers without any frozen weights in the whole network.

Figure 4. SRCNN with more layers.

decay. The training minimizes the MSE over the training

set

l(y, ŷ) =
1

2

N∑

i=1

||yi − ŷi||
2. (7)

4.2. Learning the fused network

After learning multi-layer SRCNNs as individual net-

works, we train three kinds of fused networks, the PWF,

the PNF, and the CNF. For CNF, three SRCNNs are utilized

in each fused network. We simply set each fusion layer

{Wj , bj} to a layer with single 3×3 convolution kernel and

zero padding. The overall learnable parameters in the fusion

layers will be 3 × (3 × 3 + 1) = 30. In the CNF training,

the weights of the individual networks might be frozen or

not, as shown in Fig. 3. The weights of the fusion layers are

randomly initialized by a zero mean Gaussian distribution

with standard deviation 0.001.

Besides training the CNFs by bicubic downsampled LR

images, we also utilize the unknown blur dataset from

NTIRE 2017 challenge [38]. To get a CNF specifically

for SR on unknown blurred images, we fine-tune SRCNNs

trained by bicubic downsampled LR images on this dataset.

Then similar way is adopted to construct the CNF based on

these fine-tuned SRCNNs.

For PWF, three SRCNNs are used in each fused network.

Similar to CNF, the weights of the individual networks

might also be frozen in the PWF training. The weights of

{wj , bj} are initialized as {1/3, 0}.

For PNF, we arrange two SRCNNs in a chain order. The

second SRCNN is trained using the output of the first SR-

CNN as input. The learning rate and weight initialization

are the same as the first SRCNN. Zero padding is applied

to the layers of the second SRCNN to keep the size of the

output feature maps. If we do not freeze the weights of

the first individual network, PNF is equal to fine-tuning a

deeper network with layer number the same as the sum of
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the individual networks. So the weights of the first SRCNN

will be frozen in training PNF.

All learning rates of the fused network are fixed to

0.0001. MSE between the fused HR output and ground truth

is used as the loss function. The training of the fused net-

work will proceed 10 epochs.

5. Experimental Results

5.1. Datasets

We generate the training patches from the Open Image

Dataset [40]. This dataset consists of 9 million URLs to

HD images that have been annotated with labels spanning

over 6,000 categories. Due to the overlarge size, we refer to

the validation set which consists of images with resolution

around 640 × 480. Following the setting in SRCNN, 33 ×
33 patches in bicubic upsampled LR images and 17 × 17
patches in HR images are cropped. This results in a training

set with around 20 million LR-HR pairs. For testing, the

commonly-used benchmark image datasets, Set5 [8], Set14

[32], and Berkeley Segmentation Dataset test set (BSD100)

[33] are used. The images are bicubic downsampled as the

LR input. Only the luminance channel is utilized for both

the training and testing. 1

We also refer to the dataset provided by the NTIRE 2017

challenge [38][39]. This challenge provides a large DIV2K

dataset with DIVerse 2K resolution images. A training set

with 800 images and a validation set with 100 images are

released. Different from using bicubic downsampled HR

images as input, this dataset also gives LR images generated

by unknown blur. We will use these unknown blurred LR

images to verify the effectiveness of SR systems.

5.2. Experiments on different fusion schemes

We first evaluate the networks constructed by different

fusion schemes, PWF, PNF, and CNF. Table 1 gives the ex-

perimental results of fusing 3/5/7 layers SRCNN for super

resolution with scale x3. We first observe that the accu-

racy of SRCNN increases with using more layers. For the

pixel-wise fusion PWF, there is no significant gain on the

accuracy, no matter whether the weights of the individual

SRCNNs are frozen or not. This indicates that the pixel-

wise fusion is not appropriate for super resolution. For PNF,

the accuracy is improved based on the first individual SR-

CNN. We realized that the accuracy of PNF 3+5 is lower

compared to individual 7-layer SRCNN. A potential reason

is that the learning of our 7-layer SRCNN is similar to a

PNF without freezing any weights. Since more parameters

could be fine-tuned in the 7-layer SRCNN compared to the

PNF 3+5, the accuracy is expected to be better.

1In our case, training SR network for all three channels (yCbCr) will

not improve the accuracy much compared to SR on y-channel only, plus

bicubic upsampled Cb and Cr channels.

Table 1. PSNR/SSIM evaluation of different fusion schemes based

on 3/5/7 layers SRCNNs for super resolution with scale x3.

‘Freeze’ is whether freezing the weights of the individual SRC-

NNs in training the fused network. For CNF, single 3 × 3 kernel

is utilized for each fusion layer.
Fusion Layer Freeze Set5 Set14 BSD100

SRCNN 3 - 32.96/0.9123 29.44/0.8229 28.48/0.7893

SRCNN 5 - 33.13/0.9141 29.56/0.8258 28.54/0.7912

SRCNN 7 - 33.32/0.9169 29.68/0.8284 28.62/0.7938

PWF 3+5+7 y 33.32/0.9168 29.67/0.8285 28.61/0.7935

PWF 3+5+7 n 33.31/0.9170 29.68/0.8284 28.63/0.7938

PNF 3+3 y 33.15/0.9145 29.57/0.8263 28.54/0.7915

PNF 3+5 y 33.17/0.9148 29.61/0.8267 28.57/0.7919

PNF 5+3 y 33.18/0.9149 29.61/0.8268 28.59/0.7922

PNF 5+5 y 33.20/0.9151 29.63/0.8270 28.63/0.7924

CNF 3+5+7 y 33.38/0.9174 29.74/0.8293 28.67/0.7945

CNF 3+5+7 n 33.47/0.9184 29.79/0.8301 28.74/0.7954

It could be seen that CNF is able to consistently im-

prove the PSNR and SSIM compared to individual SR-

CNNs. Learning by freezing the weights of the individ-

ual SRCNNs may improve the PSNR 0.05dB and SSIM

0.0005-0.001. If we fine-tune the whole network without

any frozen weights, the gain is increased to more than 0.1dB

PSNR and 0.001 SSIM. This shows the effectiveness of fus-

ing network by convolution layers.

Next, we evaluate the CNF using different individual net-

works and different fusion layers. In Table 2, we notice

that CNF 7+9+11 and CNF 9+11 perform better compared

to individual 11-layer SRCNN. This is consistent with the

results in Table 1. It could be seen that CNF 3+5+7 and

7+9+11 are still better compared to CNF 5+7 and 9+11 re-

spectively. This indicates that using more networks might

contribute to the accuracy. CNF 7+9+11 achieves better

performance compared to 3+5+7, but worse compared to

11+13+15. This implies that the deeper models we use for

CNF, the better accuracy we may get. We also find that

CNFs with using two 3 × 3 kernels (organized in a chain

order) in the fusion layers are better compared to the CNFs

with using single 3× 3 kernel in the fusion layers. This en-

courages us to find better ways to construct the fusion layers

in the future.

Moreover, we test the CNFs with different weight ini-

tialization. In Table 3, it could be seen that both of the

CNF 3+5+7 and the CNF 7+9+11 trained from unsuper-

vised weights [17] perform much worse compared to the

corresponding CNFs fine-tuned from existing models. Due

to the unsupervised weights initialization, the convergence

will be more difficult compared to inheriting the weights

from individual networks. This shows the advantage of fus-

ing multiple networks compared to a single end-to-end net-

work.

As summary, CNF shows better accuracy compared to

PWF and PNF. It could consistently improve the perfor-

mance compared to individual networks. The accuracy of

CNF could be enhanced by using deeper individual net-

works, more networks, or more convolution kernels in the
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Table 2. PSNR/SSIM evaluation of CNF with different individual SRCNNs and fusion layers for super resolution with scale x3. ‘Freeze’

is whether freezing the weight of the individual SRCNNs when training the fused network.
Fusion Layer Freeze Fusion layer for each individual network Set5 Set14 BSD100

SRCNN 7 - - 33.32/0.9169 29.68/0.8284 28.62/0.7938

SRCNN 11 - - 33.59/0.9204 29.81/0.8307 28.69/0.7963

CNF 5+7 n 3 × 3 33.41/0.9178 29.76/0.8396 28.69/0.7947

CNF 3+5+7 n 3 × 3 33.47/0.9184 29.79/0.8301 28.74/0.7954

CNF 3+5+7 n 3 × 3 × 2 33.52/0.9189 29.83/0.8307 28.76/0.7958

CNF 9+11 n 3 × 3 33.65/0.9214 29.85/0.8314 28.76/0.7972

CNF 7+9+11 n 3 × 3 33.69/0.9220 29.87/0.8318 28.78/0.7975

CNF 7+9+11 n 3 × 3 × 2 33.74/0.9226 29.90/0.8322 28.82/0.7980

CNF 11+13+15 n 3 × 3 33.82/0.9230 29.98/0.8331 28.86/0.7986

Table 3. PSNR/SSIM evaluation of CNFs with different weights initialization for super resolution with scale x3. ‘unsupervised’ is unsu-

pervised initialization, and ’fine-tune’ is inheriting the weights from existing models.
Fusion Layer Freeze Weight initialization Set5 Set14 BSD100

CNF 3+5+7 n unsupervised 33.29/0.9140 29.53/0.8254 28.52/0.7909

CNF 3+5+7 n fine-tune 33.47/0.9184 29.79/0.8301 28.74/0.7954

CNF 7+9+11 n unsupervised 33.45/0.9179 29.57/0.8280 28.49/0.7921

CNF 7+9+11 n fine-tune 33.69/0.9220 29.87/0.8318 28.78/0.7975

fusion layer.

5.3. Comparison to the stateoftheart

In Table 4, we compare the CNF networks with the state-

of-the-art SR algorithms A+ [10], SRCNN [15], VDSR

[17], and DRCN [18]. It could be seen that CNF 7+9+11

achieves competitive accuracy to these algorithms for all

the scales. Specifically, the CNF 11+13+15 x3 scale out-

performs the other methods for scale x3. We also train the

20-layer VDSR for scale x3, using the same training set

as CNF. The accuracy will decrease more than 0.1dB com-

pared to VDSR trained on 291 images. One potential rea-

son is that it will be difficult for the hyperparamter tuning of

deeper networks, especially when using a very large train-

ing set. The learning rate and weight decay rate need to

be carefully designed. Fig. 4 visualizes the output HR im-

ages for different SR methods. It could be seen that CNF

11+13+15 is able to retrieve more details compared to other

SR methods.

Due to using SRCNN as individual network, the network

size of the CNF is not very large. The most time-consuming

CNF 11+13+15 consists of 448,059 parameters, which is

still smaller compared to VDSR (20 layers, 650K+ param-

eters) and DRCN (deep recursive network). It takes about

0.06-0.11ms per image in average on single TITAN X GPU,

which is faster compared to VDSR and DRCN.

5.4. Experiments on the unknown blur dataset of
NTIRE challenge

We select the ‘Track 2: unknown downscaling x3 com-

petition’ in the NTIRE challenge to evaluate the proposed

CNF network. We collect unknown blur LR and HR patches

from the 800 training images. The 100 images in the val-

idation set are utilized for evaluation. Following the way

described in section 4, we fine-tune SRCNNs and then con-

struct the CNF 11+13+15 for this unknown blur dataset.

In Table 5, we may find that CNF 11+13+15 still outper-

forms 11/13/15 layer SRCNNs fine-tuned on the unknown

blur dataset. This also shows the effectiveness of CNF.

6. Conclusion

In this paper, we discuss several ways to construct a su-

per resolution system using multiple individual convolution

neural networks. The pixel-wised network fusion and pro-

gressive network fusion are first introduced. A context-

wise network fusion framework based on adding convo-

lution layers after each individual network is further pro-

posed. Experimental results on both the bicubic downsam-

pled images and the unknown blurred images show that the

proposed context-wise network fusion could improve the

accuracy compared to the individual networks. Our method

could be also generalized to the CNNs for other applica-

tions, such as deblur/denoising.
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